欧几里得算法(及扩展)&&快速幂(二分+位运算)
最近在二中苦逼地上课,天天听数论(当然听不懂)
但是,简单的还是懂一点的
1.欧几里得算法
说得这么高级干什么,gcd入门一个月的人都会吧,还需要BB?
证明可参照其他博客(不会),主要就是gcd(a,b)=gcd(b,a%b);
特殊的,gcd(a,0)=gcd(0,a)=a;
然后一行
int gcd(int m,int n) { return n?gcd(n,m%n):m; }
2.扩展欧几里得
在班里天天看紫书,终于会打(背)了。
专门对于形如 ax+by=d(a,b,d为常数,d=gcd(a,b)) 的不定方程求整数解
证明可参照其他博客(不会),主要也是gcd(a,b)=gcd(b,a%b)(真有道理)

void exgcd(int a,int b,int &x,int &y)
{
if (!b) { x=; y=; return; }
int r=a%b,m=a/b;
exgcd(b,r,y,x);
y-=x*m;
}
然后这组解满足|x|+|y|最小

其实记代码也是可以的啦。
3.快速幂
快速幂,一个入门一个月的人都会的算法,主流有二分和快速幂两个版本。
原理不多说,一个是把a^n拆成两个相同的部分再递归求之。一个是不停增大初始部分然后得解。
只不过一个是二分,一个是倍增了啦。
<1>二分
int quick_pow(int a,int n,int p) //a^n % p
{
if (!n) return ;
int res=quick_pow(a,n/,p);
res=(long long) (res*res)%p;
if (a%) res=(long long) (res*a)%p;
return res;
}
<2>位运算
int Quick_pow(int a,int n,int p) //同上
{
int res=;
while (n)
{
if (n&) res=(long long) (res*a)%p;
a=(long long) (a*a)%p;
n=n>>;
}
return res;
}
篇幅还算挺大,代码都是刚刚重打的,导致我看到的一道BZOJ的巨水题没时间打了。
至于逆元,欧拉函数什么的。。。
一脸蒙逼。
欧几里得算法(及扩展)&&快速幂(二分+位运算)的更多相关文章
- 二分求幂/快速幂取模运算——root(N,k)
二分求幂 int getMi(int a,int b) { ; ) { //当二进制位k位为1时,需要累乘a的2^k次方,然后用ans保存 == ) { ans *= a; } a *= a; b / ...
- 详解扩展欧几里得算法(扩展GCD)
浅谈扩展欧几里得(扩展GCD)算法 本篇随笔讲解信息学奥林匹克竞赛中数论部分的扩展欧几里得算法.为了更好的阅读本篇随笔,读者最好拥有不低于初中二年级(这是经过慎重考虑所评定的等级)的数学素养.并且已经 ...
- 快速幂模n运算
模运算里的求幂运算,比如 5^596 mod 1234, 当然,直接使用暴力循环也未尝不可,在书上看到一个快速模幂算法 大概思路是,a^b mod n ,先将b转换成二进制,然后从最高位开始(最高位一 ...
- 洛谷 P1226 【模板】快速幂||取余运算
题目链接 https://www.luogu.org/problemnew/show/P1226 题目描述 输入b,p,k的值,求b^p mod k的值.其中b,p,k*k为长整型数. 输入输出格式 ...
- POJ 3233 Matrix Power Series 矩阵快速幂+二分求和
矩阵快速幂,请参照模板 http://www.cnblogs.com/pach/p/5978475.html 直接sum=A+A2+A3...+Ak这样累加肯定会超时,但是 sum=A+A2+...+ ...
- 欧几里得算法与扩展欧几里得算法_C++
先感谢参考文献:http://www.cnblogs.com/frog112111/archive/2012/08/19/2646012.html 注:以下讨论的数均为整数 一.欧几里得算法(重点是证 ...
- POJ 3233 Matrix Power Series (矩阵快速幂+二分求解)
题意:求S=(A+A^2+A^3+...+A^k)%m的和 方法一:二分求解S=A+A^2+...+A^k若k为奇数:S=(A+A^2+...+A^(k/2))+A^(k/2)*(A+A^2+...+ ...
- 2017 ECJTU ACM程序设计竞赛 矩阵快速幂+二分
矩阵 Time Limit : 3000/1000ms (Java/Other) Memory Limit : 65535/32768K (Java/Other) Total Submission ...
- 【learning】 扩展欧几里得算法(扩展gcd)和乘法逆元
有这样的问题: 给你两个整数数$(a,b)$,问你整数$x$和$y$分别取多少时,有$ax+by=gcd(x,y)$,其中$gcd(x,y)$表示$x$和$y$的最大公约数. 数据范围$a,b≤10^ ...
随机推荐
- Expo大作战(二十四)--expo sdk api之Accelerometer
简要:本系列文章讲会对expo进行全面的介绍,本人从2017年6月份接触expo以来,对expo的研究断断续续,一路走来将近10个月,废话不多说,接下来你看到内容,讲全部来与官网 我猜去全部机翻+个人 ...
- 开发之道——读《移山之道——VSTS开发之道》后感
开发之道——读<移山之道——VSTS开发之道>后感 <移山之道——VSTS开发之道>(下简称<移山之道>)是邹欣老师的另一本书.相传很有名的<构建之法> ...
- BigDecimal 工具类
arg1.compareTo(arg2) arg1 > arg2 返回 int 1 arg1 = arg2 返回 int 0 arg1 < arg2 返回 int -1 public cl ...
- Python3部分Print输出格式
print("Hello World!") #直接打印字符串 print('Hello World!') #对于python,单引号也可以表示字符串 name = 'Tom' #自 ...
- Oracle 数据库 简单查询
select DISTINCT dept_id from s_emp; desc s_emp; ; --给入职3年以上员工发10万元年终奖 ; --列出职位是仓库管理员的名字和工资 select la ...
- Online, Cheap -- and Elite
Online, Cheap -- and Elite Analysis of Georgia Tech’s MOOC-inspired online master's in computer scie ...
- November 17th, 2017 Week 46th Friday
If you shut the door to all errors, truth will be shut out. 你如果拒绝面对错误,真相也会被挡在门外. Sometimes being a f ...
- java将Excel文件上传并解析为List数组
前端 //导入excel文件 layui.use('upload', function() { var upload =layui.upload; //指定允许上传的文件类型 var uploadIn ...
- cpu的核心数及线程关系
CPU个数.核心数.逻辑CPU个数:一个物理CPU可以有多个核心,一个CPU核就是一个物理线程,由英特尔开发超线程技术可以把一个物理线程模拟出两个线程来使用,使得单个核心用起来像两个核一样,以充分发挥 ...
- C# winform单元格的formatted值的类型错误 DataGridView中CheckBox列运行时候System.FormatException异常
在DataGridView手动添加了CheckBox列;在窗体Show的时候,遇到一个错误:错误如下: DataGridView中发生一下异常:System.FormatException:单元格的F ...