参考链接:https://discuss.leetcode.com/topic/18054/4-lines-o-log-n-c-java-python

1到n的整数中,1出现的次数,如11中,1出现了两次,并不是求包含1的数的个数

找规律:

假设n为六位数 abcdef.

求个位(f所在位)为1的数的个数C1:

  将n分为两部分:

    P = n / 1 = abcdef

    Q = n % 1 = 0

    对P,如果f > 1,则f的前缀从0~abcde,共(abcde+1)个

           如果f == 1,则f的前缀从0~abcde-1, ,共(abcde)个

           当前缀为abcde时,f为1,即以abcde为前缀的数,对于前缀,abcde,对应的数为:abcdef,C1共(abcde * 1 ) + (Q+1) 个,共(abcde+1)个

           如果f == 0,则f的前缀从0~abcde-1,共(abcde)个

求十位(e所在位)为1的数的个数C10:

  将n分为两部分:

    P = n / 10 = abcde

    Q = n % 10 = f

    对P,如果e > 1,则e的前缀从0~abcd,对于每一个前缀,a'b'c'd',它对应着十个数:a'b'c'd'1f'(f'从0到9),C10共( abcd +1 ) * 10个

           如果e == 1,则e的前缀从0~abcd-1,对于每一个前缀,a'b'c'd',它对应着十个数:a'b'c'd'1f'(f'从0到9)

               当前缀为abcd时,e为1,即以abcde为前缀的数,对于前缀,abcde,对应的数为:abcdef'(f'从0到f),C10共(abcd  * 10 ) + (Q+1) 个

           如果e == 0,则e的前缀从0~abcd-1,对于每一个前缀,a'b'c'd',它对应着十个数:a'b'c'd'1f'(f'从0到9)

当前缀为abcd时,e为0,没有十位为1的数,C10共(abcd  * 10 )个

求百位(d所在位)为1的数的个数C100:

  将n分为两部分:

    P = n / 100 = abcd

    Q = n % 100 = ef

    对P,如果d > 1,则d的前缀从0~abc,对于每一个前缀,a'b'c',它对应着一百个数:a'b'c'1e'f'(e'f'从00到99),C100共(abc+1) * 100个

           如果d == 1,则d的前缀从0~abc-1,对于每一个前缀,a'b'c',它对应着一百个数:a'b'c'1e'f'(e'f'从00到99)

               当前缀为abc时,d为1,即以abcd为前缀的数,对于前缀,abcd,对应的数为:abcde'f'(e'f'从00到ef),C10共(abc * 100 ) + (Q+1) 个

           如果d == 0,则d的前缀从0~abc-1,对于每一个前缀,a'b'c',它对应着一百个数:a'b'c'1e'f'(e'f'从00到99)

当前缀为abc时,d为0,没有百位为1的数,C100共(abc * 100 )个

。。。。。。

设P = abcd

当d==0时,( P + 8 )/ 10 = abc

当d==1时,( P + 8 )/ 10 = abc

当d>1时,( P + 8 )/ 10 = abc+1

代码如下:

void countOne( int n )
{
int cnt = ;
for( int m = ; m <= n; m *= )
{
int a = n / m;
int b = n % m;
cnt += ( ( a + ) / ) * m;
if( a % == )
{
cnt += ( b+ );
}
}
return cnt;
}

3出现的次数也采用同样的办法:

int countT( int n )
{
int cnt = ;
for( int m = ; m <= n; m *= )
{
int a = n / m;
int b = n % m;
cnt += ( ( a + ) / ) * m;
if( a % == )
{
cnt += ( b+ );
}
}
return cnt;
}

1到n的整数中,1出现的次数的更多相关文章

  1. 整数中1出现的次数(从1到n整数中1出现的次数)

    题目:求出1~13的整数中1出现的次数,并算出100~1300的整数中1出现的次数?为此他特别数了一下1~13中包含1的数字有1.10.11.12.13因此共出现6次,但是对于后面问题他就没辙了.AC ...

  2. 剑指Offer:面试题32——从1到n整数中1出现的次数(java实现)

    问题描述: 输入一个整数n,求1到n这n个整数的十进制表示中1出现的次数.例如输入12,从1到12这些整数中包含1的数字有1,10,11,12,1一共出现了5次. 思路:(不考虑时间效率的解法,肯定不 ...

  3. 题目1373:整数中1出现的次数(从1到n整数中1出现的次数)

    题目1373:整数中1出现的次数(从1到n整数中1出现的次数) 题目描述: 亲们!!我们的外国友人YZ这几天总是睡不好,初中奥数里有一个题目一直困扰着他,特此他向JOBDU发来求助信,希望亲们能帮帮他 ...

  4. 剑指Offer 整数中1出现的次数(从1到n整数中1出现的次数)

    题目描述 求出1~13的整数中1出现的次数,并算出100~1300的整数中1出现的次数?为此他特别数了一下1~13中包含1的数字有1.10.11.12.13因此共出现6次,但是对于后面问题他就没辙了. ...

  5. 1049. Counting Ones/整数中1出现的次数(从1到n整数中1出现的次数)

    The task is simple: given any positive integer N, you are supposed to count the total number of 1's ...

  6. 【面试题032】从1到n整数中1出现的次数

    [面试题032]从1到n整数中1出现的次数 题目:     输入一个整数n,求从1到n这n个整数的十进制表示中1出现的次数.     例如输入12,从1到12这些整数中包含1的数字有1,10,11和1 ...

  7. 九度OJ 1373 整数中1出现的次数(从1到n整数中1出现的次数)

    题目地址:http://ac.jobdu.com/problem.php?pid=1373 题目描述: 亲们!!我们的外国友人YZ这几天总是睡不好,初中奥数里有一个题目一直困扰着他,特此他向JOBDU ...

  8. 【剑指offer】面试题32:从1到n整数中1出现的次数

    题目: 求出1~13的整数中1出现的次数,并算出100~1300的整数中1出现的次数?为此他特别数了一下1~13中包含1的数字有1.10.11.12.13因此共出现6次,但是对于后面问题他就没辙了.A ...

  9. 时间效率:整数中1出现的次数(从1到n整数中1出现的次数)

    求出1~13的整数中1出现的次数,并算出100~1300的整数中1出现的次数?为此他特别数了一下1~13中包含1的数字有1.10.11.12.13因此共出现6次,但是对于后面问题他就没辙了.ACMer ...

  10. 整数中1出现的次数(从1到n的整数中1出现的次数)

    题目 求出1~13的整数中1出现的次数,并算出100~1300的整数中1出现的次数?为此他特别数了一下1~13中包含1的数字有1.10.11.12.13因此共出现6次,但是对于后面问题他就没辙了.AC ...

随机推荐

  1. C++中类的多继承

    在写这一主题的文章之前,在网上找到一篇很非常好的文章C++之继承与多态.就没有必要做重复造轮子的事件了,那就从这篇文章开始吧! 在c++中一个类可以从多个基类中派生(即可以有多个父类),这就是多继承. ...

  2. eclipce导入java 项目不可用

  3. linux下mysql开启远程访问权限 防火墙开放3306端口

    linux下mysql开启远程访问权限 防火墙开放3306端口 转载  2017-01-21   作者:JAVA-ANDROID 这篇文章主要为大家详细介绍了linux下mysql开启远程访问权限,防 ...

  4. 如何遍历Set对象

    对 set 的遍历 1.迭代遍历: Set<String> set = new HashSet<String>(); Iterator<String> it = s ...

  5. node 开始深入

    一起学nodejs 讲师: matthew vscode+nodejs4.6 http://list.youku.com/albumlist/show/id_27966955.html?spm=a2h ...

  6. 【原】wow64 x86/x64 代码切换过程分析

    下面以ntdll32!ZwQueryInformationProcess API为例分析 x86代码与x64代码之间的切换过程, 32bit的test程序: step1: ntdll32!ZwQuer ...

  7. deb 和 rpm 后缀文件 区别和安装

    https://blog.csdn.net/u010977122/article/details/52986217 下载一个ATOM 的deb的安装包

  8. Canvas 绘画

    一.Canvas 应用场景 1.游戏 2.图表 3.动画 4.codepen.io (HTML5 动效) 最早 二.Canvas 发展历史 1.最早在apple的safari  1.3中引入 2.ie ...

  9. LinQ to sql 各种数据库查询方法

    1.多条件查询: 并且 && 或者 || var list = con.car.Where(r => r.code == "c014" || r.oil == ...

  10. 百度地图报错:APP Referer校验失败

    今天微信小程序,通过经纬度,调用百度api,将经纬度转换成城市名和街道地址,结果小程序报错. 错误信息如下: 这个是KEY的白名单设置问题.因为白名单设置限制了来源信息.只要在下面红色部分设置IP,或 ...