1014 Waiting in Line (30 分)
Suppose a bank has N windows open for service. There is a yellow line in front of the windows which devides the waiting area into two parts. The rules for the customers to wait in line are:
- The space inside the yellow line in front of each window is enough to contain a line with M customers. Hence when all the N lines are full, all the customers after (and including) the (st one will have to wait in a line behind the yellow line.
- Each customer will choose the shortest line to wait in when crossing the yellow line. If there are two or more lines with the same length, the customer will always choose the window with the smallest number.
- Customeri will take Ti minutes to have his/her transaction processed.
- The first N customers are assumed to be served at 8:00am.
Now given the processing time of each customer, you are supposed to tell the exact time at which a customer has his/her business done.
For example, suppose that a bank has 2 windows and each window may have 2 custmers waiting inside the yellow line. There are 5 customers waiting with transactions taking 1, 2, 6, 4 and 3 minutes, respectively. At 08:00 in the morning, customer1 is served at window1 while customer2 is served at window2. Customer3 will wait in front of window1 and customer4 will wait in front of window2. Customer5 will wait behind the yellow line.
At 08:01, customer1 is done and customer5 enters the line in front of window1 since that line seems shorter now. Customer2 will leave at 08:02, customer4 at 08:06, customer3 at 08:07, and finally customer5 at 08:10.
Input Specification:
Each input file contains one test case. Each case starts with a line containing 4 positive integers: N (≤, number of windows), M (≤, the maximum capacity of each line inside the yellow line), K (≤, number of customers), and Q (≤, number of customer queries).
The next line contains K positive integers, which are the processing time of the K customers.
The last line contains Q positive integers, which represent the customers who are asking about the time they can have their transactions done. The customers are numbered from 1 to K.
Output Specification:
For each of the Q customers, print in one line the time at which his/her transaction is finished, in the format HH:MM where HH is in [08, 17] and MM is in [00, 59]. Note that since the bank is closed everyday after 17:00, for those customers who cannot be served before 17:00, you must output Sorry instead.
Sample Input:
2 2 7 5
1 2 6 4 3 534 2
3 4 5 6 7
Sample Output:
08:07题目分析:利用队列将可以入队的顾客入队 每次出队都选择那个出队后窗口时间最小的队列进行出队
08:06
08:10
17:00
Sorry
注意 对于服务结束时间超出17点 但是开始时间小于17点的 也可以服务完成
#include<iostream>
#include<vector>
#include<queue>
#include<algorithm>
using namespace std;
struct T
{
int Hour=;
int Minute=;
}T1[],T2[];
int Time[];
int Tag = ;
int main()
{
int N, M, K, Q;
cin >> N >> M >> K >> Q;
queue<int> Queue[];
for (int i = ; i <=K; i++)
cin >> Time[i];
for(int j=;j<M;j++)
for (int i = ; i < N; i++)
{
if(Tag<=K)
Queue[i].push(Tag++);
}
for (int j = ; j < K; j++)
{
int Min = ;
int Minp = -;
for (int i = ; i < N; i++)
{
if(!Queue[i].empty())
if ((T1[i].Hour * + T1[i].Minute + Time[Queue[i].front()]) < Min)
{
Min = T1[i].Hour * + T1[i].Minute + Time[Queue[i].front()];
Minp = i;
}
}
int num =Queue[Minp].front();
T1[Minp].Hour += (T1[Minp].Minute + Time[num]) / ;
T1[Minp].Minute = (T1[Minp].Minute + Time[num]) % ;
T2[num].Hour = T1[Minp].Hour;
T2[num].Minute = T1[Minp].Minute;
Queue[Minp].pop();
if (Tag <= K)
Queue[Minp].push(Tag++);
}
int q;
for (int i = ; i < Q; i++)
{
cin >> q;
if (T2[q].Hour < || (T2[q].Hour == && T2[q].Minute - Time[q] < ))
printf("%02d:%02d\n", T2[q].Hour, T2[q].Minute);
else
cout << "Sorry" << endl;
}
return ;
}
1014 Waiting in Line (30 分)的更多相关文章
- PAT 甲级 1014 Waiting in Line (30 分)(queue的使用,模拟题,有个大坑)
1014 Waiting in Line (30 分) Suppose a bank has N windows open for service. There is a yellow line ...
- 1014 Waiting in Line (30分)
1014 Waiting in Line (30分) Suppose a bank has N windows open for service. There is a yellow line i ...
- PTA 1014 Waiting in Line (30分) 解题思路及满分代码
题目 Suppose a bank has N windows open for service. There is a yellow line in front of the windows whi ...
- PAT 1014 Waiting in Line (30分) 一个简单的思路
这题写了有一点时间,最开始想着优化一下时间,用优先队列去做,但是发现有锅,因为忽略了队的长度. 然后思考过后,觉得用时间线来模拟最好做,先把窗口前的队列填满,这样保证了队列的长度是统一的,这样的话如果 ...
- 【PAT甲级】1014 Waiting in Line (30 分)(队列维护)
题面: 输入四个正整数N,M,K,Q(N<=20,M<=10,K,Q<=1000),N为银行窗口数量,M为黄线内最大人数,K为需要服务的人数,Q为查询次数.输入K个正整数,分别代表每 ...
- 1014 Waiting in Line (30)(30 分)
Suppose a bank has N windows open for service. There is a yellow line in front of the windows which ...
- PAT A 1014. Waiting in Line (30)【队列模拟】
题目:https://www.patest.cn/contests/pat-a-practise/1014 思路: 直接模拟类的题. 线内的各个窗口各为一个队,线外的为一个,按时间模拟出队.入队. 注 ...
- 1014. Waiting in Line (30)
Suppose a bank has N windows open for service. There is a yellow line in front of the windows which ...
- 1014 Waiting in Line (30)(30 point(s))
problem Suppose a bank has N windows open for service. There is a yellow line in front of the window ...
随机推荐
- 探究Spring Boot中的接收参数问题与客户端发送请求传递数据
结合此篇参考Spring框架学习笔记(9)--API接口设计相关知识及具体编码实现 在使用Spring Boot进行接收参数的时候,发现了许多问题,之前一直都很忙,最近才稍微有空研究一下此问题. 网上 ...
- ffmpeg 使用
ffmpeg 使用 一.介绍 FFmpeg 是视频处理最常用的开源软件,大量用于视频网站和商业软件(比如 Youtube 和 iTunes),视频本身是一个容器,里面包含了视频.音频和字幕等.FFmp ...
- 3000字编程入门--附带Java学习路线及视频
Title: 编程入门 GitHub: BenCoper Reference: 尚硅谷-2019 Study: 文字版+视频+实战(第一个自学的网站) Explain: 文末附带Java学习视频以及项 ...
- json到底是什么??????
JSON(JavaScript Object Notation)是一种基于JavaScript语法子集的开放标准数据交换格式.JSON是基于文本的,轻量级的,通常被认为易于读/写. 通俗解释: 1.j ...
- Windows软件包管理工具 - Chocolatey
概述 windows下的软件安装管理器(用于自动管理软件安装,更新,卸载) Chocolatey引入了真正的包管理概念,使您能够对事物进行版本控制,管理依赖关系和安装顺序,更好的库存管理以及其他功能 ...
- JS事件流模型
JS事件流模型 事件捕获Event Capturing是一种从上而下的传播方式,以click事件为例,其会从最外层根节向内传播到达点击的节点,为从最外层节点逐渐向内传播直到目标节点的方式. 事件冒泡E ...
- 微信小程序校历组件
微信小程序校历组件 校历组件,可以作为校园小程序的插件,如果觉得不错,点个star吧
- Functional mechanism: regression analysis under differential privacy_阅读报告
Functional mechanism: regression analysis under differential privacy 论文学习报告 组员:裴建新 赖妍菱 周子玉 2020 ...
- ML-Agents(三)3DBall例子
ML-Agents(三)3DBall例子 前一周忙着公司的考试,都没有怎么学新的,今天补上~ 之后的记录,我准备先只研究官方的示例,主要是把研究过程中的疑惑和想法记下来.首先我先补充一下如何利用GPU ...
- 洛谷 P1891 疯狂LCM 题解
原题链接 享受推式子的乐趣吧 数论真有趣! 庆祝:数论紫题第 \(3\) 道. \[\sum_{i=1}^n \operatorname{lcm}(i,n) \] \[= \sum_{i=1}^n \ ...