FCOS : 找到诀窍了,anchor-free的one-stage目标检测算法也可以很准 | ICCV 2019
论文提出anchor-free和proposal-free的one-stage的目标检测算法FCOS,不再需要anchor相关的的超参数,在目前流行的逐像素(per-pixel)预测方法上进行目标检测,根据实验结果来看,FCOS能够与主流的检测算法相比较,达到SOTA,为后面的大热的anchor-free方法提供了很好的参考
来源:【晓飞的算法工程笔记】 公众号
论文: FCOS: Fully Convolutional One-Stage Object Detection
Introduction
大多目标检测网络都是anchor-based,虽然anchor能带来很大的准确率提升,但也会带来一些缺点:
- 准确率对anchor的尺寸、长宽比和数量较为敏感,这些超参都会人工细调
- anchor的尺寸和长宽是固定的,如果目标的相关属性相差较大,会比较难预测
- 为了高召回,通常会使用密集的anchor布满输入,大多为负样本,导致训练不平衡
- anchor需要如IOU的复杂计算
近期,FCNs在各视觉任务中都有不错的表现,但目标检测由于anchor的存在,不能进行纯逐像素预测,于是论文抛弃anchor,提出逐像素全卷积目标检测网络FCOS网络,总结如下:
- 效仿前期的FCNs-based网络,如DenseBox,每个像素回归一个4D向量指代预测框相对于当前像素位置的偏移,如图1左
- 为了预测不同尺寸的目标,DenseBox会缩放或剪裁生成图像金字塔进行预测,而且当目标重叠时,会出现像素不知道负责预测哪个目标的问题,如图1右。在对问题进行研究后,论文发现使用FPN能解决以上问题,后面会细讲
- 由于预测的结果会产生许多低质量的预测结果,论文采用center-ness分支来预测当前像素与对应目标中心点的偏离情况,用来去除低质量预测结果以及进行NMS
Our Approach
Fully Convolutional One-Stage Object Detector
让$F_i\in \mathbb{R}^{H\times W\times C}$为层$i$的特征图,$s$为层的总stride,输入的GT为${B_i}$,$B_i=(x_0{(i)},y_0{(i)},x_1{(i)},y_1{(i)},c^{(i)})\in \mathbb{R}^4\times {1,2...C }$分别为box的左上角和右下角坐标以及类别,$C$为类别数。特征图$F_i$的每个位置$(x,y)$,可以通过$(\lfloor\frac{s}{2}\rfloor + xs, \lfloor\frac{s}{2}\rfloor + ys)$映射回原图,FCOS直接预测相对于当前像素的box位置,而不是anchor的那样将像素作为中心再回归
当像素$(x,y)$落在GT中则认为是正样本,将类别$c*$设置为目标类别,否则设置为0。除了类别,还有4D向量$t=(l*,t,r*,b*)$作为回归目标,分别为box的四条边与像素的距离。当像素落在多个GT中时,直接选择区域最小的作为回归目标。相对于anchor-based的IOU判断,FCOS能生成更多的正样本来训练回归器
Network Outputs
网络最终输出80D分类标签向量$p$和4D box坐标向量$t=(l,t,r,b)$,训练$C$个二分类器而不是多分类器,在最后特征后面分别接4个卷积层用于分类和定位分支,在定位分支使用$exp(x)$保证结果为正,整体输出比anchor-based少9x倍
Loss Function
$L_{cls}$为focal loss,$L_{reg}$为UnitBox中的IOU loss,$N_{pos}$为正样本数,$\lambda$为平衡权重,公式2计算特征图上的所有结果
Inference
对于输入图片,推理得到特征图$F_i$的分类分数$p_{x,y}$以及回归预测$t_{x,y}$,然后取$p_{x,y}>0.05$的作为正样本,公共公式1得到预测框位置
Multi-level Prediction with FPN for FCOS
下面讲下FCOS如何使用FPN来解决之前提到的问题:
- 由于large stride,通常最后的特征图都会面临较低的最大可能召回(best possible recall, BPR)问题。在anchor based detector中,可以通过降低IOU阈值来弥补,而实验发现,FCN-based的FCOS本身就能在large stride情况下还有更好的BPR,加上FPN,BPR则会更高
- 目标框重叠会导致难解的歧义,例如不知道像素对应哪个回归目标,论文使用多层预测来解决这个问题,甚至FCN-based效果比anchor-based要好
如图2,FPN使用${P_3,P_4,P_5,P_6,P_7 }$层特征,其中$P_3$、$P_4$和$P_5$分别通过$C_3$、$C_4$和$C_5$的$1\times 1$卷积以及top-down connection生成,$P_6$和$P_7$则是分别通过$P_5$和$P_6$进行stride为2的$1\times1$卷积生成,各特征的stride分别为8,16,32,64和128
anchor-based方法对不同的层使用不同的大小,论文则直接限制每层的bbox回归范围。首先计算$l*$,$t$,$r*$和$b$,如果满足$max(l*,t,r8,b)>m_i$或$max(l*,t,r8,b)<m_{i-1}$,则设为负样本,不需要进行bbox回归。$m$为层$i$的最大回归距离,$m_2$,$m_3$,$m_4$,$m_5$,$m_6$和$m_7$分别为0,64,128,256,512和$\infty$。如果在这样设置下,像素仍存在歧义,则选择区域最小的作为回归目标,从实验来看,这样设定的结果很好
最后,不同层间共享head,不仅减少参数,还能提高准确率。而由于不同的层负责不同的尺寸,所以不应该使用相同的head,因此,论文将$exp(x)$改为$exp(s_ix)$,添加可训练的标量$s_i$来自动调整不同层的指数基底
Center-ness for FCOS
使用FPN后,FCOS与anchor-based detector仍然存在差距,主要来源于低质量的预测box,这些box的大多由距离目标中心点相当远的像素产生。因此,论文提出新的独立分支来预测像素的center-ness,用来评估像素与目标中心点的距离
center-ness的gt计算如公式3,取值$(0,1]$,使用二值交叉熵进行训练。在测试时,最终的分数是将分类分数与center-ness进行加权,低质量的box分数会降低,最后可能通过NMS进行过滤
center-ness的另一种形式是在训练时仅用目标框的中心区域像素作为正样本,这会带来额外的超参数,目前已经验证性能会更好
Experiments
Ablation Study
Multi-level Prediction with FPN
best possible recall(BPR)定义为检测器能够回归的gt比例,如果gt被赋予某个预测结果,即为能够回归。从表1看来,不用FPN的FCOS直接有95.55%,而anchor-based的经典实现只有86.82%,加上FPN后就提高到98.40%
在原始FCOS中,正样本中歧义目标的比例为23.16%,使用FPN后能够降低到7.14%。这里论文提到,同类别目标的歧义是没关系的,因为不管预测为哪个目标,都是正确的,预测漏的目标可以由其它更靠近他的像素来预测。所以,只考虑不同类别的歧义比例大概为17.84%,使用FPN后可降为3.75%。而在最终结果中,仅2.3%的框来自于歧义像素,考虑不同类别的歧义,则仅有1.5%的,所以歧义不是FCN-based FCOS的问题
With or Without Center-ness
center-ness分支能够将AP从33.5%升为37.1%,比直接从回归结果中计算的方式要好
FCOS vs. Anchor-based Detectors
相对于RetinaNet,之前FCOS使用了分组卷积(GN)和使用$P_5$来产生$P_6$和$P_7$,为了对比,去掉以上的改进进行实验,发现准确率依旧比anchor-based要好
Comparison with State-of-the-art Detectors
Extensions on Region Proposal Networks
将anchor-based的RPNs with FPN替换成FCOS,能够显著提高$AR{100}$和$AR{1k}$
Class-agnostic Precision-recall Curves
Visualization for Center-ness
CONCLUSION
论文提出anchor-free和proposal-free的one-stage的目标检测算法FCOS,不再需要anchor相关的的超参数,在目前流行的逐像素(per-pixel)预测方法上进行目标检测,根据实验结果来看,FCOS能够与主流的检测算法相比较,达到SOTA,为后面的大热的anchor-free方法提供了很好的参考
如果本文对你有帮助,麻烦点个赞或在看呗~
更多内容请关注 微信公众号【晓飞的算法工程笔记】
FCOS : 找到诀窍了,anchor-free的one-stage目标检测算法也可以很准 | ICCV 2019的更多相关文章
- CVPR目标检测与实例分割算法解析:FCOS(2019),Mask R-CNN(2019),PolarMask(2020)
CVPR目标检测与实例分割算法解析:FCOS(2019),Mask R-CNN(2019),PolarMask(2020)1. 目标检测:FCOS(CVPR 2019)目标检测算法FCOS(FCOS: ...
- 目标检测中的anchor-based 和anchor free
目标检测中的anchor-based 和anchor free 1. anchor-free 和 anchor-based 区别 深度学习目标检测通常都被建模成对一些候选区域进行分类和回归的问题.在 ...
- 全卷积目标检测:FCOS
全卷积目标检测:FCOS FCOS: Fully Convolutional One-Stage Object Detection 原文链接:https://arxiv.org/abs/1904.01 ...
- 目标检测复习之Anchor Free系列
目标检测之Anchor Free系列 CenterNet(Object as point) 见之前的过的博客 CenterNet笔记 YOLOX 见之前目标检测复习之YOLO系列总结 YOLOX笔记 ...
- 目标检测 anchor 理解笔记
anchor在计算机视觉中有锚点或锚框,目标检测中常出现的anchor box是锚框,表示固定的参考框. 目标检测的任务: 在哪里有东西 难点: 目标的类别不确定.数量不确定.位置不确定.尺度不确定 ...
- 语义分割(semantic segmentation) 常用神经网络介绍对比-FCN SegNet U-net DeconvNet,语义分割,简单来说就是给定一张图片,对图片中的每一个像素点进行分类;目标检测只有两类,目标和非目标,就是在一张图片中找到并用box标注出所有的目标.
from:https://blog.csdn.net/u012931582/article/details/70314859 2017年04月21日 14:54:10 阅读数:4369 前言 在这里, ...
- 目标检测 1 : 目标检测中的Anchor详解
咸鱼了半年,年底了,把这半年做的关于目标的检测的内容总结下. 本文主要有两部分: 目标检测中的边框表示 Anchor相关的问题,R-CNN,SSD,YOLO 中的anchor 目标检测中的边框表示 目 ...
- 【57】目标检测之Anchor Boxes
Anchor Boxes 到目前为止,对象检测中存在的一个问题是每个格子只能检测出一个对象,如果你想让一个格子检测出多个对象,你可以这么做,就是使用anchor box这个概念. 我们还是先吃一颗栗子 ...
- 关于目标检测的anchor问题
关于目标检测其实我一直也在想下面的两个论断: Receptive Field Is Natural Anchor Receptive Field Is All You Need 只是一直没有实验.但是 ...
随机推荐
- JavaScript面向对象class
JavaScript面向对象class 本周逆战班学习的主题是“面向对象”,很多人觉得面向对象很难理解,但其实我们早就在面向对象的思想之中了,今天就让我们再重新认识一下他,主要介绍一下ES6中新增的c ...
- An incompatible version [1.1.33] of the APR based Apache Tomcat Native library is installed, while Tomcat requires version [1.2.14]
Springboot项目启动出现如下错误信息 解决办法在此地址:http://archive.apache.org/dist/tomcat/tomcat-connectors/native/1.2.1 ...
- 鸟哥的Linux私房菜基础学习篇(第三版)——阅读笔记(二)
第一章 Linux是什么 1.Linux是什么 一套操作系统 早期的Linux是针对386开发的 具有可移植性 2.Unix及Linux的发展史 1973年,Unix诞生,Ritchie等人以C语言写 ...
- 简说Python之图形初体验
针对孩子,最容易引起小孩的感官认知的就是图形.因此,系统运用图形编程,可以更好地让孩子喜欢上编程. turtle叫做,Turtle graphics.是python第三方的画图模块工具.可以通过imp ...
- oracle12c数据库第一周小测验
一.单选题(共4题,30.4分) 1 ( )是位于用户与操作系统之间的一层数据管理软件.数据库在建立.使用和维护时由其统一管理.统一控制. A. A.DBMS B. B.DB C. C.DBS ...
- Spring解决循环依赖,你真的懂了吗?
导读 前几天发表的文章SpringBoot多数据源动态切换和SpringBoot整合多数据源的巨坑中,提到了一个坑就是动态数据源添加@Primary接口就会造成循环依赖异常,如下图: 这个就是典型的构 ...
- USB概述及协议基础
USB概述及协议基础 USB的拓扑结构 USB是一种主从结构的系统.主机叫做Host,从机叫做Device(也叫做设备). 通常所说的主机具有一个或者多个USB主控制器(host controller ...
- linux下查看系统版本
工作中我们会遇到安装软件需要知道linux是什么发行版本,话不多话上干货(按照我认为常用排序) 1. lsb_release -a 名词解释:LSB (Linux Standard Base) # 如 ...
- iOS开发如何面对疫情过后的面试高峰期 !
2020年本应该是一个 "爱你.爱你"的年份!却因为 黑天鹅 给我们带来非常大的影响! 一.2020年iOS招聘数据分析 这里是 2020年3月份BOSS直聘 北京iOS招聘前几页 ...
- 【转】linux中ifconfig 命令详解详解
1 概述 ifconfig工具不仅可以被用来简单地获取网络接口配置信息,还可以修改这些配置.用ifconfig命令配置的网卡信息,在网卡重启后机器重启后,配置就不存在.要想将上述的配置信息永远的存的电 ...