Codeforces Round #565 (Div. 3)--D. Recover it!--思维+欧拉筛
D. Recover it!
Authors guessed an array aa consisting of nn integers; each integer is
not less than 22 and not greater than 2⋅1052⋅105. You don’t know the
array aa, but you know the array bb which is formed from it with the
following sequence of operations:Firstly, let the array bb be equal to the array aa; Secondly, for each
ii from 11 to nn: if aiai is a prime number, then one integer paipai
is appended to array bb, where pp is an infinite sequence of prime
numbers (2,3,5,…2,3,5,…); otherwise (if aiai is not a prime number),
the greatest divisor of aiai which is not equal to aiai is appended to
bb; Then the obtained array of length 2n2n is shuffled and given to
you in the input. Here paipai means the aiai-th prime number. The
first prime p1=2p1=2, the second one is p2=3p2=3, and so on.Your task is to recover any suitable array aa that forms the given
array bb. It is guaranteed that the answer exists (so the array bb is
obtained from some suitable array aa). If there are multiple answers,
you can print any.Input
The first line of the input contains one integer nn
(1≤n≤2⋅1051≤n≤2⋅105) — the number of elements in aa.The second line of the input contains 2n2n integers
b1,b2,…,b2nb1,b2,…,b2n (2≤bi≤27501312≤bi≤2750131), where bibi is the
ii-th element of bb. 27501312750131 is the 199999199999-th prime
number.Output
In the only line of the output print nn integers a1,a2,…,ana1,a2,…,an
(2≤ai≤2⋅1052≤ai≤2⋅105) in any order — the array aa from which the
array bb can be obtained using the sequence of moves given in the
problem statement. If there are multiple answers, you can print any.
Examples
input
Copy
3
3 5 2 3 2 4
output
Copy
3 4 2
input
Copy
1
2750131 199999
output
Copy
199999
input
Copy
1
3 6
output
Copy
6
题解如下
#include<iostream>
#include<vector>
#include<algorithm>
using namespace std;
const int Len = 1e6;
int prime[Len * 3];
int ar[Len * 3];
int br[3 * Len];
int barrel[3 * Len];
vector<int> vec;
int n;
bool cmp(int a,int b)
{
return a > b;
}
void Prime()
{
for(int i = 2; i <= Len * 3; i ++)
prime[i] = 1;
//素数筛选法
for(int i = 2; i * i <= Len * 3; i ++)
{
if(prime[i])
{
for(int j = i * i; j <= Len * 3; j += i)
prime[j] = 0;
}
}
}
void init()
{
Prime();
int pos = 1;
for(int i = 2; i <= Len * 3; i ++)
{
if(prime[i])
{
ar[pos ++] = i;
}
}
//输入
for(int i = 1; i <= 2 * n; i ++)
{
scanf("%d",&br[i]);
}
//统计各个数字出现的次数
for(int i = 1; i <= 2 * n; i ++)
{
barrel[br[i]] ++;
}
sort(br + 1 , br + 2 * n + 1 , cmp);
}
void Solve()
{
init();
for(int i = 1; i <= 2 * n; i ++)
{
int cnt = barrel[br[i]];
if(cnt > 0)
{
if(! prime[br[i]])
{
int mx_divisor;
for(int j = 2; ; j ++)
if(br[i] % j == 0)
{
mx_divisor = br[i] / j;
break;
}
if(barrel[mx_divisor] > 0)
{
barrel[mx_divisor] --;
vec.push_back(br[i]);
barrel[br[i]] --;
}
}
else
{
int pri = ar[br[i]];
if(barrel[pri] > 0)
{
barrel[pri] --;
vec.push_back(br[i]);
barrel[br[i]] --;
}
}
}
}
for(auto x : vec)
printf("%d ",x);
}
int main()
{
//freopen("test.txt","r",stdin);
scanf("%d",&n);
Solve();
return 0;
}
Codeforces Round #565 (Div. 3)--D. Recover it!--思维+欧拉筛的更多相关文章
- Codeforces Round #565 (Div. 3) C. Lose it! (思维)
题意:给你一串只含\(4,8,15,16,23,42\)的序列,如果它满足长度是\(6\)的倍数并且有\(\frac {k}{6}\)个子序列是\([4,8,15,16,23,42]\),则定义它是好 ...
- Codeforces Round #288 (Div. 2)D. Tanya and Password 欧拉通路
D. Tanya and Password Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/508 ...
- Product Oriented Recurrence(Codeforces Round #566 (Div. 2)E+矩阵快速幂+欧拉降幂)
传送门 题目 \[ \begin{aligned} &f_n=c^{2*n-6}f_{n-1}f_{n-2}f_{n-3}&\\ \end{aligned} \] 思路 我们通过迭代发 ...
- Codeforces Round #565 (Div. 3) B. Merge it!
链接: https://codeforces.com/contest/1176/problem/B 题意: You are given an array a consisting of n integ ...
- Codeforces Round #565 (Div. 3) A. Divide it!
链接: https://codeforces.com/contest/1176/problem/A 题意: You are given an integer n. You can perform an ...
- Codeforces Round #565 (Div. 3) C. Lose it!
链接: https://codeforces.com/contest/1176/problem/C 题意: You are given an array a consisting of n integ ...
- Codeforces Round #565 (Div. 3) B
B. Merge it! 题目链接:http://codeforces.com/contest/1176/problem/B 题目 You are given an array a consistin ...
- Codeforces Round #565 (Div. 3) A
A. Divide it! 题目链接:http://codeforces.com/contest/1176/problem/A 题目 You are given an integer n You ca ...
- Codeforces Round #565 (Div. 3) F.Destroy it!
题目地址:http://codeforces.com/contest/1176/problem/F 思路:其实就是一个01背包问题,只是添加了回合和每回合的01限制,和每当已用牌数到了10的倍数,那张 ...
随机推荐
- mupdf 基于命令行的 pdf转图片
下载地址: https://www.mupdf.com/downloads/index.html 使用方法: 打开cmd,切换到mupdf文件路径下,再在命令行中敲入命令 mutool.exe d ...
- Markdown语法说明及常用软件推荐(附链接)
Markdown语法同样支持HTML标签 以下所有字符均为英文字符 标题 标题级别由#决定,一个为一级 样例 # 一级标题 ## 二级标题 ### 三级标题 #### 四级标题 ##### 五级标题 ...
- angular - collapse--TemplateRef
用的ant collapse组件 需要自定义Header 请忽略前面的dw... 主要是TemplateRef<void> 查了半天.可以实现效果,直接上代码,我也不懂为什么 反正实现了 ...
- Mysql数据库定时全库备份
如下脚本用于mysql全库定时备份 mysql_dump_script.sh #!/bin/bash #保存备份个数,最多保留4个文件 number=4 #备份保存路径 backup_dir=/db/ ...
- Java中的IO与NIO
前文开了高并发学习的头,文末说了将会选择NIO.RPC相关资料做进一步学习,所以本文开始学习NIO知识. IO知识回顾 在学习NIO前,有必要先回顾一下IO的一些知识. IO中的流 Java程序通过流 ...
- django 用户认证 user对象
django中的用户模型 内部带有很多的属性方法,我们可以直接使用 1 is_staff Boolean.决定用户是否可以访问admin管理界面.默认False. 2 is_active Boolea ...
- ML-Agents(二)创建一个学习环境
ML-Agents(二)创建一个学习环境 一.前言 上一节我们讲了如何配置ML-Agents环境,这一节我们创建一个示例,主要利用Reinforcement Learning(强化学习). 如上图,本 ...
- 每天都在用 Map,这些核心技术你知道吗?
本篇文章站在多线程并发安全角度,带你了解多线程并发使用 HashMap 将会引发的问题,深入学习 ConcurrentHashMap ,带你彻底掌握这些核心技术. 全文摘要: HashMap 核心技术 ...
- 我用STM32MP1做了个疫情监控平台4—功能完善界面重新设计
目录 前言 界面展示 新增功能 API 接口说明 多个接口数据的获取和解析 FontAwesome字体图标库的使用 代码下载 系列教程 @ 前言 之前我用STM32MP1和Qt实现了疫情监控平台,系列 ...
- 998. 最大二叉树 II
最大树定义:一个树,其中每个节点的值都大于其子树中的任何其他值. 给出最大树的根节点 root. 就像之前的问题那样,给定的树是从表 A(root = Construct(A))递归地使用下述 Con ...