基于Python的大数据的分页模型代码
最近在写一个cmdb系统的分页,尽管Django本身有分页的模块儿,但是还是想实现一下自己心中想的分页的一种逻辑
因为,在我们工作当中,当我们的数据量超级大的时候,其实我们每次分页查询都不必将所有的数据查询出来,而是可以按阶段的查询,举个例子
每次查询5页数据,当需要第六页的时候,再次进行加载,为了更加明了,做了举例
首先我们规定好每次查询5页,每页4条数据
db_data = list(range(1,100)) final_page = len(db_data) one_page_num = 5 #每页4条
one_time_num = 5 #每次查5页
1、查询索引的逻辑 设定findIndex查询的索引
# page = 1 int(1/5) + 1 findIndex = 1
# page = 2 int(2/5) + 1 findIndex = 1
# page = 3 int(3/5) + 1 findIndex = 1
# page = 4 int(4/5) + 1 findIndex = 1
# page = 5 int(5/5) findIndex = 1
# page = 6 int(6/5) + 1 findIndex = 2
# page = 7 int(7/5) + 1 findIndex = 2
# page = 8 int(8/5) + 1 findIndex = 2
# page = 9 int(9/5) + 1 findIndex = 2
# page = 10 int(10/5) findIndex = 2
# page = 11 int(11/5) + 1 findIndex = 3
# page = 12 int(12/5) + 1 findIndex = 3
# page = 13 int(13/5) + 1 findIndex = 3
# page = 14 int(14/5) + 1 findIndex = 3
# page = 15 int(15/5) findIndex = 3
所以我们可以写如下代码
if page/one_time_num > int(page/one_time_num):
findIndex = int(page / one_time_num) + 1
else:
findIndex = int(page / one_time_num)
#进行第一次查询,查询每次5页,每页4条的数据
select_num = one_time_num * one_page_num #这里决一次定查询20条
select_start = (findIndex - 1) * select_num # 开始查询的索引
select_down = findIndex * select_num # 结束查询的索引
select_data = db_data[select_start: select_down] #这里查询出了一次20条数据
这个时候是查询出20条数据了,但是,我们想要的具体的数据和页码对不上,所以做了以下的数据
#下面对20条数据进行截取
#findIndex 1
# page = 1 1-(0*5) gnPage = 1
# page = 2 2-(0*5) gnPage = 2
# page = 3 3-(0*5) gnPage = 3
# page = 4 4-(0*5) gnPage = 4
# page = 5 5-(0*5) gnPage = 5
#findIndex 2
# page = 6 6-(1*5) gnPage = 1
# page = 7 7-(1*5) gnPage = 2
# page = 8 8-(1*5) gnPage = 3
# page = 9 9-(1*5) gnPage = 4
# page = 10 10-(1*5) gnPage = 5
#findIndex 3
# page = 11 11-(2*5) gnPage = 1
# page = 12 12-(2*5) gnPage = 2
# page = 13 13-(2*5) gnPage = 3
# page = 14 14-(2*5) gnPage = 4
# page = 15 15-(2*5) gnPage = 5
所以我们可以得到以下代码来获取具体的一页数据
#设定 截取的索引位now_index
now_index = page - (findIndex-1)*one_time_num
#设定单页的截取起始
page_start = (now_index - 1) * one_page_num
page_end = now_index * one_page_num
#开始截取
page_data = select_data[page_start:page_end]
最后进行代码结合
#coding:utf-8 db_data = list(range(1,100)) one_page_num = 5 #每页4条
one_time_num = 5 #每次查5页 while True:
page = int(input("page >>>")) #输入页码 #查询索引的逻辑 设定findIndex查询的索引
# page = 1 int(1/5) + 1 findIndex = 1
# page = 2 int(2/5) + 1 findIndex = 1
# page = 3 int(3/5) + 1 findIndex = 1
# page = 4 int(4/5) + 1 findIndex = 1
# page = 5 int(5/5) findIndex = 1
# page = 6 int(6/5) + 1 findIndex = 2
# page = 7 int(7/5) + 1 findIndex = 2
# page = 8 int(8/5) + 1 findIndex = 2
# page = 9 int(9/5) + 1 findIndex = 2
# page = 10 int(10/5) findIndex = 2
# page = 11 int(11/5) + 1 findIndex = 3
# page = 12 int(12/5) + 1 findIndex = 3
# page = 13 int(13/5) + 1 findIndex = 3
# page = 14 int(14/5) + 1 findIndex = 3
# page = 15 int(15/5) findIndex = 3 if page/one_time_num > int(page/one_time_num):
findIndex = int(page / one_time_num) + 1
else:
findIndex = int(page / one_time_num)
#进行第一次查询,查询每次5页,每页4条的数据
select_num = one_time_num * one_page_num #这里决一次定查询20条
select_start = (findIndex - 1) * select_num # 开始查询的索引
select_down = findIndex * select_num # 结束查询的索引 select_data = db_data[select_start: select_down] #这里查询出了一次20条数据 #下面对20条数据进行截取
#findIndex 1
# page = 1 1-(0*5) gnPage = 1
# page = 2 2-(0*5) gnPage = 2
# page = 3 3-(0*5) gnPage = 3
# page = 4 4-(0*5) gnPage = 4
# page = 5 5-(0*5) gnPage = 5
#findIndex 2
# page = 6 6-(1*5) gnPage = 1
# page = 7 7-(1*5) gnPage = 2
# page = 8 8-(1*5) gnPage = 3
# page = 9 9-(1*5) gnPage = 4
# page = 10 10-(1*5) gnPage = 5
#findIndex 3
# page = 11 11-(2*5) gnPage = 1
# page = 12 12-(2*5) gnPage = 2
# page = 13 13-(2*5) gnPage = 3
# page = 14 14-(2*5) gnPage = 4
# page = 15 15-(2*5) gnPage = 5
#设定 截取的索引位now_index
now_index = page - (findIndex-1)*one_time_num
#设定单页的截取起始
page_start = (now_index - 1) * one_page_num
page_end = now_index * one_page_num
#开始截取
page_data = select_data[page_start:page_end]
#输出效果
print("+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++")
print("当前是第%s次查询"%findIndex)
print("当前查询到的所有数据是 \n %s" % select_data)
print("当前是 %s 页" % page)
print("当前的数据是 \n %s " % page_data)
print("+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++")
大家试一下吧。
基于Python的大数据的分页模型代码的更多相关文章
- MySQL大数据量分页查询方法及其优化
MySQL大数据量分页查询方法及其优化 ---方法1: 直接使用数据库提供的SQL语句---语句样式: MySQL中,可用如下方法: SELECT * FROM 表名称 LIMIT M,N---适 ...
- 大数据实时处理-基于Spark的大数据实时处理及应用技术培训
随着互联网.移动互联网和物联网的发展,我们已经切实地迎来了一个大数据 的时代.大数据是指无法在一定时间内用常规软件工具对其内容进行抓取.管理和处理的数据集合,对大数据的分析已经成为一个非常重要且紧迫的 ...
- 给Ambari集群里安装基于Hive的大数据实时分析查询引擎工具Impala步骤(图文详解)
不多说,直接上干货! Impala和Hive的关系(详解) 扩展博客 给Clouderamanager集群里安装基于Hive的大数据实时分析查询引擎工具Impala步骤(图文详解) 参考 horton ...
- 【Python开发】Python 适合大数据量的处理吗?
Python 适合大数据量的处理吗? python 能处理数据库中百万行级的数据吗? 处理大规模数据时有那些常用的python库,他们有什么优缺点?适用范围如何? 需要澄清两点之后才可以比较全面的看这 ...
- Python/Numpy大数据编程经验
Python/Numpy大数据编程经验 1.边处理边保存数据,不要处理完了一次性保存.不然程序跑了几小时甚至几天后挂了,就啥也没有了.即使部分结果不能实用,也可以分析程序流程的问题或者数据的特点. ...
- Access大数据高效分页语句
Access大数据高效分页语句 oracle的分页查询可以利用rowid伪列. db2的分页查询可以利用row_number() over()聚合函数. mysql有limit. access仿佛先天 ...
- 高速基于echarts的大数据可视化
[Author]: kwu 高速基于echarts的大数据可视化,echarts纯粹的js实现的图表工具.高速开发的过程例如以下: 1.引入echarts的依赖js库 <script type= ...
- 软工之词频统计器及基于sketch在大数据下的词频统计设计
目录 摘要 算法关键 红黑树 稳定排序 代码框架 .h文件: .cpp文件 频率统计器的实现 接口设计与实现 接口设计 核心功能词频统计器流程 效果 单元测试 性能分析 性能分析图 问题发现 解决方案 ...
- 黑马基础阶段测试题:创建一个存储字符串的集合list,向list中添加以下字符串:”C++”、”Java”、” Python”、”大数据与云计算”。遍历集合,将长度小于5的字符串从集合中删除,删除成功后,打印集合中的所有元素
package com.swift; import java.util.ArrayList; import java.util.List; import java.util.ListIterator; ...
随机推荐
- leetcode 0206
目录 ✅ 292. Nim 游戏 ✅ 933. 最近的请求次数 ✅ 942. 增减字符串匹配 仍旧有需要思考的地方 py尝试 ✅ 977. 有序数组的平方 ✅ 292. Nim 游戏 https:// ...
- 误删/boot下文件或目录的修复方式!
步骤:进入硬盘的急救模式,进入磁盘,挂载光盘到/media上,rpm安装内核到media目录下,从装grub程序到/dev/sda,然后将grub文件从定向到/boot下,然后重启. 第一步:进入bi ...
- 弱密码检测JR!
1.JR(Joth the Ripper)简介·一款密码分析工具,支持字典式的暴力破解·通过对 shadow 文件的口令分析,可以检测密码·官方网站:http://www.openwall.com/j ...
- [ DLPytorch ] 线性回归&Softmax与分类模型&多层感知机
线性回归 基础知识 实现过程 学习笔记 批量读取 torch_data = Data.TensorDataset(features, labels) dataset = Data.DataLoader ...
- SVN安装不成功,提示Invalid driver H:
本来我的SVN安装在H盘,后来我把包含H盘的硬盘下下来了,这样H盘就不存在了. 这时候我想重新安装SVN,点击安装包,结果提示Invalid driver H,怎么都不能安装成功. 这时候我去注册表里 ...
- Python 爬取 热词并进行分类数据分析-[简单准备] (2020年寒假小目标05)
日期:2020.01.27 博客期:135 星期一 [本博客的代码如若要使用,请在下方评论区留言,之后再用(就是跟我说一声)] 所有相关跳转: a.[简单准备](本期博客) b.[云图制作+数据导入] ...
- Python 爬取的类封装【将来可能会改造,持续更新...】(2020年寒假小目标09)
日期:2020.02.09 博客期:148 星期日 按照要求,我来制作 Python 对外爬取类的固定部分的封装,以后在用 Python 做爬取的时候,可以直接使用此类并定义一个新函数来处理CSS选择 ...
- 遍历pd.Series的index和value的方法
以下内容来自链接:https://blog.csdn.net/qq_42648305/article/details/89634186 遍历pd.Series的index和value的方法如下,pyt ...
- 登陆页面的Sql注入
自己手工注入的知识比较薄弱,这里就记录一下注入过程 题目: .登陆页面,使用sql万能密码可以登陆账号,但是flag不会自己跳出来,出题人是想让我们手工注入 常用万能密码: 'or'='or' adm ...
- Mybatis笔记一
课程安排: mybatis和springmvc通过订单商品 案例驱动 第一天:基础知识(重点,内容量多) 对原生态jdbc程序(单独使用jdbc开发)问题总结 mybatis框架原理 (掌握) myb ...