[NOI Online #3]魔法值
题目
点这里看题目。
分析
我们不难想到,对于系数进行一下的拆分:
f(u,j)&=\bigoplus_{(u,v)\in E} f(v,j-1)\\
&=\bigoplus_{(u,v)\in E}\bigoplus_{(v,w)\in E} f(w,j-2)\\
&...\\
&=\bigoplus_{x\in V} f(x,0)\times C^j_{u,x}
\end{aligned}
\]
其中,\(C^j_{u,x}\)表示恰好走\(j\)步时,从\(u\)到\(x\)的方案数。
根据异或的性质,我们实际上只会关心\(C^j_{u,x}\)的奇偶性。
怎么求这个东西呢?我们可以想到用矩阵乘法。
初始矩阵就是邻接矩阵:
\begin{cases}
1 & (i,j)\in E\\
0 & (i,j)\not \in E
\end{cases}
\]
现在对于一个询问\(a_i\),我们发现我们需要的系数实际上就是\(T^{a_i}\),这个东西可以用矩阵快速幂快速地求出来。
单纯地按照上面的方法,时间是\(O(n^3\sum\log_2a)\),不妙。
再仔细想一想,我们明明只需要从 1 出发的信息(只需要\(C^{a_i}_1\)),使用矩阵快速幂却多算了很多。
考虑\(C^{a_i}_1\)实际上是:
C^{a_i}_1=v\times T^{a_i}
\]
一个向量与矩阵相乘,时间是\(O(n^2)\)的。因此,我们可以将求出\(C^{a_i}\)的时间缩减到\(O(n^2)\),总时间\(O(n^2\sum \log_2a)\),可过。
实际操作中,我们需要预处理出\(T\)的倍增,避免每次重新计算,导致复杂度退化。
代码
#include <cstdio>
#include <cstring>
typedef long long LL;
const int MAXN = 105, MAXLOG = 40;
template<typename _T>
void read( _T &x )
{
x = 0;char s = getchar();int f = 1;
while( s > '9' || s < '0' ){if( s == '-' ) f = -1; s = getchar();}
while( s >= '0' && s <= '9' ){x = ( x << 3 ) + ( x << 1 ) + ( s - '0' ), s = getchar();}
x *= f;
}
template<typename _T>
void write( _T x )
{
if( x < 0 ){ putchar( '-' ); x = ( ~ x ) + 1; }
if( 9 < x ){ write( x / 10 ); }
putchar( x % 10 + '0' );
}
struct matrix
{
bool mat[MAXN][MAXN];
int n, m;
matrix() { n = m = 0, memset( mat, false, sizeof mat ); }
matrix( const int N, const int M ) { n = N, m = M, memset( mat, false, sizeof mat ); }
bool* operator [] ( const int indx ) { return mat[indx]; }
matrix operator * ( matrix b ) const
{
matrix ret = matrix( n, b.m );
for( int i = 1 ; i <= ret.n ; i ++ )
for( int k = 1 ; k <= m ; k ++ )
if( mat[i][k] )
for( int j = 1 ; j <= ret.m ; j ++ )
ret[i][j] ^= mat[i][k] & b[k][j];
return ret;
}
void operator *= ( matrix b ) { *this = *this * b; }
};
matrix B[MAXLOG], A;
LL f[MAXN];
int N, M, Q;
int main()
{
read( N ), read( M ), read( Q );
B[0] = matrix( N, N );
for( int i = 1 ; i <= N ; i ++ ) read( f[i] );
for( int i = 1, a, b ; i <= M ; i ++ )
read( a ), read( b ), B[0][a][b] = B[0][b][a] = 1;
for( int i = 1 ; i <= 32 ; i ++ ) B[i] = B[i - 1] * B[i - 1];
while( Q -- )
{
LL a; read( a );
A = matrix( 1, N ), A[1][1] = 1;
for( int i = 32 ; ~ i ; i -- )
if( a >> i & 1 )
A *= B[i];
LL ans = 0;
for( int i = 1 ; i <= N ; i ++ )
if( A[1][i] )
ans ^= f[i];
write( ans ), putchar( '\n' );
}
return 0;
}
[NOI Online #3]魔法值的更多相关文章
- [NOI Online #3 提高组] 魔法值
现在只会\(O(qn^3log)\)的\(40pts\)做法,鸽了. 反正就是预处理之后,去掉一个\(n\). 我预处理了,没去\(n\),hhhh,成功减少了一半的常数.
- 从一道NOI练习题说递推和递归
一.递推: 所谓递推,简单理解就是推导数列的通项公式.先举一个简单的例子(另一个NOI练习题,但不是这次要解的问题): 楼梯有n(100 > n > 0)阶台阶,上楼时可以一步上1阶,也可 ...
- NOI 动态规划题集
noi 1996 登山 noi 8780 拦截导弹 noi 4977 怪盗基德的滑翔翼 noi 6045 开餐馆 noi 2718 移动路线 noi 2728 摘花生 noi 2985 数字组合 no ...
- noi 6047 分蛋糕
题目链接:http://noi.openjudge.cn/ch0405/6047/ 和Uva1629很类似,不过,可能用记忆化难写一点,状态初始化懒得搞了.就用循环好了. 状态描叙也可以修改,那个题目 ...
- 洛谷P1371 NOI元丹
P1371 NOI元丹 71通过 394提交 题目提供者洛谷OnlineJudge 标签云端评测 难度普及/提高- 提交 讨论 题解 最新讨论 我觉得不需要讨论O long long 不够 没有取 ...
- NOI 2015 荷马史诗【BZOJ 4198】k叉Huffman树
抱歉因为NOIP集训,好长时间没再写题解了. NOI 2015也就只有这道题一看就能懂了-- 4198: [Noi2015]荷马史诗 Time Limit: 10 Sec Memory Limit: ...
- noi题库(noi.openjudge.cn) 1.7编程基础之字符串T31——T35
T31 字符串P型编码 描述 给定一个完全由数字字符('0','1','2',-,'9')构成的字符串str,请写出str的p型编码串.例如:字符串122344111可被描述为"1个1.2个 ...
- NOI WC2016滚粗记
Day-4 报到日,今年居然没有发包QAQ,中午到的,志愿者很热情,食堂吃不了(也有可能是吃不惯),空调打不热,有拖线板(好评),有wifi覆盖(虽然听说连上要看脸)(反正我是没连过,用的自己的流量) ...
- NOI题库刷题日志 (贪心篇题解)
这段时间在NOI题库上刷了刷题,来写点心得和题解 一.寻找平面上的极大点 2704:寻找平面上的极大点 总时间限制: 1000ms 内存限制: 65536kB 描述 在一个平面上,如果有两个点( ...
随机推荐
- 洛谷P2765 魔术球问题
题目链接:https://www.luogu.org/problemnew/show/P2765 知识点: 最大流 解题思路: 本题所有边的容量均为 \(1\). 从 \(1\) 开始加入数字,将这个 ...
- java第十二周课后作业0523
1.编写一个程序,实现字符串大小写的转换并倒序输出.要求如下(1)使用for循环将字符串“ Hello world”从最后一个字符开始遍历(2)遍历的当前字符如果是大写字符,就使用 toLower C ...
- dede列表页限制标题长度
{dede:list pagesize ='10' titlelen="45"} <li><a href="[field:arcurl/]"& ...
- js 三级联动 1
<!DOCTYPE html> <html> <head> <meta charset="utf-8" /> <title&g ...
- Android中的多进程、多线程
前面几篇总结了进程.线程相关的知识.这里总结下关于Android中的多进程.多线程及其使用. 这里总结的Android中的多进程.多线程也是一个基础,可扩展的很多. Android中多进程 常见的几种 ...
- SourceTree 配置 GitLab
生成SSH 创建SSH,执行ssh-keygen -t rsa -C "youremail@example.com",会在.ssh目录下生成id_rsa.id_rsa.pub两个私 ...
- 潜入FLEXBOX——CSS弹性布局
介绍 Flexbox是CSS3中的一种新的布局模式,旨在满足现代Web的更复杂的需求.本文将详细介绍新近稳定化的Flexbox语法.浏览器支持将迅速增长,因此,当支持范围足够使Flexbox实用时,您 ...
- PAT1065 单身狗 (25分) 思路记录——参考大神柳婼
1065 单身狗 (25分) “单身狗”是中文对于单身人士的一种爱称.本题请你从上万人的大型派对中找出落单的客人,以便给予特殊关爱. 输入格式: 输入第一行给出一个正整数 N(≤ 50 000), ...
- Beta冲刺——代码规范与计划
这个作业属于哪个课程 软件工程 这个作业要求在哪里 Beta冲刺 这个作业的目标 Beta冲刺 作业正文 正文 github链接 项目地址 其他参考文献 无 一.代码规范 采用ShowDoc网站进行编 ...
- Rocket - diplomacy - AddressSet
https://mp.weixin.qq.com/s/ZsEVt1GslL7ufJdJlgpfNQ 介绍AddressSet的实现. 1. 基本定义 使用base/mask ...