题目

  点这里看题目。

分析

  我们不难想到,对于系数进行一下的拆分:

\[\begin{aligned}
f(u,j)&=\bigoplus_{(u,v)\in E} f(v,j-1)\\
&=\bigoplus_{(u,v)\in E}\bigoplus_{(v,w)\in E} f(w,j-2)\\
&...\\
&=\bigoplus_{x\in V} f(x,0)\times C^j_{u,x}
\end{aligned}
\]

  其中,\(C^j_{u,x}\)表示恰好走\(j\)步时,从\(u\)到\(x\)的方案数

  根据异或的性质,我们实际上只会关心\(C^j_{u,x}\)的奇偶性。

  怎么求这个东西呢?我们可以想到用矩阵乘法。

  初始矩阵就是邻接矩阵:

\[T_{i,j}=
\begin{cases}
1 & (i,j)\in E\\
0 & (i,j)\not \in E
\end{cases}
\]

  现在对于一个询问\(a_i\),我们发现我们需要的系数实际上就是\(T^{a_i}\),这个东西可以用矩阵快速幂快速地求出来。

  单纯地按照上面的方法,时间是\(O(n^3\sum\log_2a)\),不妙。

  再仔细想一想,我们明明只需要从 1 出发的信息(只需要\(C^{a_i}_1\)),使用矩阵快速幂却多算了很多。

  考虑\(C^{a_i}_1\)实际上是:

\[ \boldsymbol v = \{1,0,0,...\}\\
C^{a_i}_1=v\times T^{a_i}
\]

  一个向量与矩阵相乘,时间是\(O(n^2)\)的。因此,我们可以将求出\(C^{a_i}\)的时间缩减到\(O(n^2)\),总时间\(O(n^2\sum \log_2a)\),可过。

  实际操作中,我们需要预处理出\(T\)的倍增,避免每次重新计算,导致复杂度退化。

代码

#include <cstdio>
#include <cstring> typedef long long LL; const int MAXN = 105, MAXLOG = 40; template<typename _T>
void read( _T &x )
{
x = 0;char s = getchar();int f = 1;
while( s > '9' || s < '0' ){if( s == '-' ) f = -1; s = getchar();}
while( s >= '0' && s <= '9' ){x = ( x << 3 ) + ( x << 1 ) + ( s - '0' ), s = getchar();}
x *= f;
} template<typename _T>
void write( _T x )
{
if( x < 0 ){ putchar( '-' ); x = ( ~ x ) + 1; }
if( 9 < x ){ write( x / 10 ); }
putchar( x % 10 + '0' );
} struct matrix
{
bool mat[MAXN][MAXN];
int n, m;
matrix() { n = m = 0, memset( mat, false, sizeof mat ); }
matrix( const int N, const int M ) { n = N, m = M, memset( mat, false, sizeof mat ); }
bool* operator [] ( const int indx ) { return mat[indx]; } matrix operator * ( matrix b ) const
{
matrix ret = matrix( n, b.m );
for( int i = 1 ; i <= ret.n ; i ++ )
for( int k = 1 ; k <= m ; k ++ )
if( mat[i][k] )
for( int j = 1 ; j <= ret.m ; j ++ )
ret[i][j] ^= mat[i][k] & b[k][j];
return ret;
} void operator *= ( matrix b ) { *this = *this * b; }
}; matrix B[MAXLOG], A;
LL f[MAXN];
int N, M, Q; int main()
{
read( N ), read( M ), read( Q );
B[0] = matrix( N, N );
for( int i = 1 ; i <= N ; i ++ ) read( f[i] );
for( int i = 1, a, b ; i <= M ; i ++ )
read( a ), read( b ), B[0][a][b] = B[0][b][a] = 1;
for( int i = 1 ; i <= 32 ; i ++ ) B[i] = B[i - 1] * B[i - 1];
while( Q -- )
{
LL a; read( a );
A = matrix( 1, N ), A[1][1] = 1;
for( int i = 32 ; ~ i ; i -- )
if( a >> i & 1 )
A *= B[i];
LL ans = 0;
for( int i = 1 ; i <= N ; i ++ )
if( A[1][i] )
ans ^= f[i];
write( ans ), putchar( '\n' );
}
return 0;
}

[NOI Online #3]魔法值的更多相关文章

  1. [NOI Online #3 提高组] 魔法值

    现在只会\(O(qn^3log)\)的\(40pts\)做法,鸽了. 反正就是预处理之后,去掉一个\(n\). 我预处理了,没去\(n\),hhhh,成功减少了一半的常数.

  2. 从一道NOI练习题说递推和递归

    一.递推: 所谓递推,简单理解就是推导数列的通项公式.先举一个简单的例子(另一个NOI练习题,但不是这次要解的问题): 楼梯有n(100 > n > 0)阶台阶,上楼时可以一步上1阶,也可 ...

  3. NOI 动态规划题集

    noi 1996 登山 noi 8780 拦截导弹 noi 4977 怪盗基德的滑翔翼 noi 6045 开餐馆 noi 2718 移动路线 noi 2728 摘花生 noi 2985 数字组合 no ...

  4. noi 6047 分蛋糕

    题目链接:http://noi.openjudge.cn/ch0405/6047/ 和Uva1629很类似,不过,可能用记忆化难写一点,状态初始化懒得搞了.就用循环好了. 状态描叙也可以修改,那个题目 ...

  5. 洛谷P1371 NOI元丹

    P1371 NOI元丹 71通过 394提交 题目提供者洛谷OnlineJudge 标签云端评测 难度普及/提高- 提交  讨论  题解 最新讨论 我觉得不需要讨论O long long 不够 没有取 ...

  6. NOI 2015 荷马史诗【BZOJ 4198】k叉Huffman树

    抱歉因为NOIP集训,好长时间没再写题解了. NOI 2015也就只有这道题一看就能懂了-- 4198: [Noi2015]荷马史诗 Time Limit: 10 Sec  Memory Limit: ...

  7. noi题库(noi.openjudge.cn) 1.7编程基础之字符串T31——T35

    T31 字符串P型编码 描述 给定一个完全由数字字符('0','1','2',-,'9')构成的字符串str,请写出str的p型编码串.例如:字符串122344111可被描述为"1个1.2个 ...

  8. NOI WC2016滚粗记

    Day-4 报到日,今年居然没有发包QAQ,中午到的,志愿者很热情,食堂吃不了(也有可能是吃不惯),空调打不热,有拖线板(好评),有wifi覆盖(虽然听说连上要看脸)(反正我是没连过,用的自己的流量) ...

  9. NOI题库刷题日志 (贪心篇题解)

    这段时间在NOI题库上刷了刷题,来写点心得和题解 一.寻找平面上的极大点 2704:寻找平面上的极大点 总时间限制:  1000ms  内存限制:  65536kB 描述 在一个平面上,如果有两个点( ...

随机推荐

  1. FTP上传 -首先上传文件到的那台电脑得安装ftp

    /*↓↓↓↓ add upload ftp file 2014-03-16*/        /*↓↓↓↓ add 2014-03-16 ftp upload file*/    var $ftpse ...

  2. ESlint中console.log报错问题

    ESlint中console.log报错问题 由于ESlint规范化,导致console.log的使用也会报错,下面是设置允许console.log控制台输出 描述:打开 package.json 文 ...

  3. IDEA提高开发效率的7个插件

    IDEA提高开发效率的7个插件 1. 多行编辑 先来体验一下从xml文件拷贝字段新建实体对象 一般我们为了新建多表连接后映射的 ResultMap ,耗费不少时间,那么我们就来试一试这个多行编辑 表字 ...

  4. 还不会K8S吗?先从kubeadm开始吧

    目录 1. 准备工作 1.1 机器准备 1.2 系统配置 1.2.1 主机名及域名解析 1.2.2 免密登录 1.2.3 配置yum源 1.2.4 安装必要依赖包 1.2.5 关闭防火墙.SELinu ...

  5. JavaScript数组常见用法

    最近做一个项目中做一个竞猜游戏界面,游戏规则和彩票是一样的.在实现“机选一注”,“机选五注”的时候遇到数组的一些操作,例如产生['01', '02' ... '35']这样的数组,随机抽取不重复的元素 ...

  6. shiro的ssm集成和简单的开发尝试

    配置web.xml <!-- 配置shiro的集成开始 --> <filter> <filter-name>shiroFilter</filter-name& ...

  7. corosync+pacemaker实现httpd高可用

    corosync+pacemaker 官方网址 https://clusterlabs.org/ 一.开源高可用了解 OPEN SOURCE HIGH AVAILABILITY CLUSTER STA ...

  8. 剑指Offer之链表中倒数第k个结点

    题目描述 输入一个链表,输出该链表中倒数第k个结点.   思路:首先计算出链表的长度,再计算出倒数第k个是正数第几个,找到该结点即可. public ListNode FindKthToTail(Li ...

  9. C#中方法的静态和非静态

    在代码中,给方法加上static就成为了一个静态的方法,然而静态方法是隶属于类的,由类名点出来! 不给方法加static就是一个非静态方法,非静态的方法,是隶属于对象的,需要把类实例化之后,用对象名去 ...

  10. [JavaWeb基础] 028.CSS简介和基础语法

    css 概述 CSS 指层叠样式表 (Cascading Style Sheets) 样式定义如何显示 HTML 元素 样式通常存储在样式表中 把样式添加到 HTML 4.0 中,是为了解决内容与表现 ...