Nearest Common Ancestors

Time Limit: 1000MS   Memory Limit: 10000K
Total Submissions: 37386   Accepted: 18694

Description

A rooted tree is a well-known data structure in computer science and engineering. An example is shown below:



In the figure, each node is labeled with an integer from {1,
2,...,16}. Node 8 is the root of the tree. Node x is an ancestor of node
y if node x is in the path between the root and node y. For example,
node 4 is an ancestor of node 16. Node 10 is also an ancestor of node
16. As a matter of fact, nodes 8, 4, 10, and 16 are the ancestors of
node 16. Remember that a node is an ancestor of itself. Nodes 8, 4, 6,
and 7 are the ancestors of node 7. A node x is called a common ancestor
of two different nodes y and z if node x is an ancestor of node y and an
ancestor of node z. Thus, nodes 8 and 4 are the common ancestors of
nodes 16 and 7. A node x is called the nearest common ancestor of nodes y
and z if x is a common ancestor of y and z and nearest to y and z among
their common ancestors. Hence, the nearest common ancestor of nodes 16
and 7 is node 4. Node 4 is nearer to nodes 16 and 7 than node 8 is.

For other examples, the nearest common ancestor of nodes 2 and 3 is
node 10, the nearest common ancestor of nodes 6 and 13 is node 8, and
the nearest common ancestor of nodes 4 and 12 is node 4. In the last
example, if y is an ancestor of z, then the nearest common ancestor of y
and z is y.

Write a program that finds the nearest common ancestor of two distinct nodes in a tree.

Input

The
input consists of T test cases. The number of test cases (T) is given in
the first line of the input file. Each test case starts with a line
containing an integer N , the number of nodes in a tree,
2<=N<=10,000. The nodes are labeled with integers 1, 2,..., N.
Each of the next N -1 lines contains a pair of integers that represent
an edge --the first integer is the parent node of the second integer.
Note that a tree with N nodes has exactly N - 1 edges. The last line of
each test case contains two distinct integers whose nearest common
ancestor is to be computed.

Output

Print exactly one line for each test case. The line should contain the integer that is the nearest common ancestor.

Sample Input

2
16
1 14
8 5
10 16
5 9
4 6
8 4
4 10
1 13
6 15
10 11
6 7
10 2
16 3
8 1
16 12
16 7
5
2 3
3 4
3 1
1 5
3 5

Sample Output

4
3

题意:输入t代表有多个测试样例,每个样例第一行输入一个数n,表示有n个节点,接下来n-1行描述这n个节点的关系,第n行输入x,y要求x,y的最近公共祖先
#include <iostream>
#include <cstdio>
#include <cstring>
#include <vector>
using namespace std;
const int N = 1e4 + ;
vector<int> ve[N];//ve[]是用来建表的一个数组
vector<int> que[N];//que[]是用来查询的一个数组
int ans, pre[N], vis[N];//pre[]是节点编号
int t, n;
int find(int x)//查找公共祖先
{
return pre[x] == x ? x : find(pre[x]);//距离x最近的一个没有更新父节点的点(pre[x]=x),就是最近的祖先节点
}
void init()
{
for (int i = ; i <= n; i++)
{
pre[i] = i;//初始化所有节点的父节点为它本身
vis[i] = ;
ve[i].clear();
que[i].clear();
}
} void dfs(int u, int fa)
{
vis[u] = ;//标记表示查询过
for (int i = ; i<ve[u].size(); i++)//借助并查集,在DFS过程中,我们每到达一个节点u,便创建一棵以u为根结点的子树,ve[u].size()就是这个节点子节点的数目
{
int v = ve[u][i];
dfs(v, u);//继续以v为子节点,u为根节点往下遍历到底
}
for (int j = ; j<que[u].size(); j++)//反向遍历,更新遍历过节点的父节点
{
int v = que[u][j];
if (vis[v] == )
{
ans = find(v);
}
}
pre[u] = fa;//更新父节点
} int main()
{
scanf("%d", &t);
while (t--)
{
scanf("%d", &n);//是节点数目
init();//初始化
int x, y;
for (int i = ; i<n - ; i++) //描述父子关系,建表
{
scanf("%d %d", &x, &y);
ve[x].push_back(y);//父子结点关系,X是父节点,y是子节点
vis[y] = ;//标记所有子节点,只有最顶上的根节点没有做过子节点才不会被标记
}
scanf("%d %d", &x, &y);
que[x].push_back(y);//查询
que[y].push_back(x);
for (int i = ; i <= n; i++)
{
if (vis[i] == )
{
memset(vis, , sizeof(vis));
dfs(i, -);//从根节点开始,因为根节点没有父节点,所以初始为-1
break;
}
}
printf("%d\n", ans);
}
return ;
}

poj 1330 Nearest Common Ancestors 求最近祖先节点的更多相关文章

  1. POJ 1330 Nearest Common Ancestors(求最近的公共祖先)

    题意:给出一棵树,再给出两个节点a.b,求离它们最近的公共祖先.方法一: 先用vector存储某节点的子节点,fa数组存储某节点的父节点,最后找出fa[root]=0的根节点root.      之后 ...

  2. POJ - 1330 Nearest Common Ancestors 最近公共祖先+链式前向星 模板题

    A rooted tree is a well-known data structure in computer science and engineering. An example is show ...

  3. POJ 1330 Nearest Common Ancestors (最近公共祖先LCA + 详解博客)

    LCA问题的tarjan解法模板 LCA问题 详细 1.二叉搜索树上找两个节点LCA public int query(Node t, Node u, Node v) { int left = u.v ...

  4. POJ 1330 Nearest Common Ancestors / UVALive 2525 Nearest Common Ancestors (最近公共祖先LCA)

    POJ 1330 Nearest Common Ancestors / UVALive 2525 Nearest Common Ancestors (最近公共祖先LCA) Description A ...

  5. POJ - 1330 Nearest Common Ancestors(基础LCA)

    POJ - 1330 Nearest Common Ancestors Time Limit: 1000MS   Memory Limit: 10000KB   64bit IO Format: %l ...

  6. POJ.1330 Nearest Common Ancestors (LCA 倍增)

    POJ.1330 Nearest Common Ancestors (LCA 倍增) 题意分析 给出一棵树,树上有n个点(n-1)条边,n-1个父子的边的关系a-b.接下来给出xy,求出xy的lca节 ...

  7. POJ 1330 Nearest Common Ancestors 倍增算法的LCA

    POJ 1330 Nearest Common Ancestors 题意:最近公共祖先的裸题 思路:LCA和ST我们已经很熟悉了,但是这里的f[i][j]却有相似却又不同的含义.f[i][j]表示i节 ...

  8. LCA POJ 1330 Nearest Common Ancestors

    POJ 1330 Nearest Common Ancestors Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 24209 ...

  9. POJ 1330 Nearest Common Ancestors(lca)

    POJ 1330 Nearest Common Ancestors A rooted tree is a well-known data structure in computer science a ...

随机推荐

  1. js正则 - 限制用户名只能中文、字母和数字 , 不能包含特殊字符

    /^[\u4E00-\u9FA5A-Za-z0-9]+$/   

  2. CH12 动态内存

    动态分配的对象的生命期与它们在哪里创建的五官,只有显示地释放时,这些对象才被销毁 静态内存用来保存局部static对象.类static数据成员以及定义在任何函数之外的变量,栈内存用来保存定义在函数内的 ...

  3. NoNodeAvailableException异常的解决

    Elasticsearch 相关学习,昨天还好好的,今天就出错了!!! 完整异常为 : NoNodeAvailableException[None of the configured nodes ar ...

  4. 前端学习笔记系列一:14 vue3.X中alias的配置

    第一步: 第二步: // vue.config.js module.exports = { configureWebpack: { resolve: { alias: { 'assets': '@/a ...

  5. Nginx反向代理实现负载均衡配置图解

    Nginx反向代理实现负载均衡配置图解 [导读] 负载均衡配置是超大型机器需要考虑的一些问题,同时也是数据安全的一种做法,下面我来介绍在nginx中反向代理 负载均衡配置图解,大家可参考本文章来操作. ...

  6. VS 项目没有“添加引用”选项

    出问题的环境:vs2017,unity2017unity创建工程后,vs打开项目后,无法添加引用dll,没有“添加引用”项原因: 需要把目标框架改为.

  7. Vue-cli3与springboot项目整合打包

    一.需求        使用前后端分离编写了个小程序,前端使用的是vue-cli3创建的项目,后端使用的是springboot创建的项目,部署的时候一起打包部署,本文对一些细节部分进行了说明.   二 ...

  8. vi/vim编辑器基本操作

    一.vi/vim的三种模式 vi编辑器有三种模式:命令模式(command mode).插入模式(Insert mode).底行模式(last line mode). 就是你直接用命令(vi  文件名 ...

  9. P1066 图像过滤

    P1066 图像过滤 转跳点:

  10. '/'和‘/*’差异造成的No mapping found for HTTP request with URI [/springMVC/welcome.jsp] in DispatcherServlet with name 'springmvc'

    在采用springMVC框架的时候所遇到的一个小问题,其中web.xml中关于servlet的配置如下: <servlet> <servlet-name>springmvc&l ...