题目描述:Maximum Tape Utilization Ratio

Tags: 贪婪策略

设有n 个程序{1,2,…, n }要存放在长度为L的磁带上。程序i存放在磁带上的长度是li ,1 < = i < = n。 程序存储问题要求确定这n 个程序在磁带上的一个存储方案,使得能够在磁带上存储尽可能多的程序。在保证存储最多程序的前提下还要求磁带的利用率达到最大。 对于给定的n个程序存放在磁带上的长度,编程计算磁带上最多可以存储的程序数和占用磁带的长度。

输入

第一行是2 个正整数,分别表示文件个数n <=600和磁带的长度L<=6000。接下来的1 行中,有n个正整数,表示程序存放在磁带上的长度。

输出

第1 行输出最多可以存储的程序数和占用磁带的长度;第2行输出存放在磁带上的每个程序的长度。

样例输入

9 50
2 3 13 8 80 20 21 22 23

样例输出

5 49
2 3 13 8 23 思路:先排序,最大可能存储程序的个数,然后DFS找到最优解。
备注:直接上来就DFS,一般般都会超时,用贪心策略才能A。
// Maximum Tape Utilization Ratio.cpp : 定义控制台应用程序的入口点。
// #include "stdafx.h" //超时!!!!!
//#include <stdio.h>
//#include <string.h>
//#include <algorithm>
//#include <iostream>
//using namespace std;
//
//#define MAX 605
//int n, len, L[MAX], maxL = 0 /*存储的最大长度*/, maxS = 0/*存储的最多程序数目*/, vis[MAX], path[MAX];
//
//int cmp(int a, int b)
//{
// return a < b;
//}
//
////DFS,index为当前处理的物品编号
////sumS和sumL分别为当前总程序数和当前总长度
//void DFS(int index, int sumS, int sumL)
//{
// if (sumL > len) return;
// if (index >= n)
// { //已经完成了对n件物品的选择(死胡同)
// if (sumS > maxS || (sumS == maxS && maxL < sumL))
// {
// maxS = sumS;
// maxL = sumL;
// memcpy(path, vis, sizeof(vis));
// }
// return;
// }
// //岔道口
// vis[index]= 0 ; DFS(index + 1, sumS, sumL);//不选择第index件物品
// if ((len - sumL) >= L[index])
// vis[index] = 1; DFS(index + 1, sumS + 1, sumL + L[index]);//选择第index件物品
//}
//
//int main()
//{
// scanf("%d %d", &n, &len);
// for (int i = 0; i < n; i++) scanf("%d", &L[i]);
//
// memset(vis, 0, sizeof(vis));
// memset(path, 0, sizeof(path));
//
// sort(L, L + n,cmp);
// DFS(0, 0, 0);
//
//
// //搜索背包路径
// int ans = 0, num = 0, res[MAX];
// for (int i = 0, flag = 0; i < n; i++)
// {
// if (path[i])
// {
// ans += L[i];
// res[num++] = L[i];
// }
// }
// printf("%d %d\n", num,ans);
// for (int i = 0; i < num;i++)
// if (i != n - 1) printf("%d ", res[i]);
// else printf("%d\n", res[i]);
//
// return 0;
//} //超时解决方法:直接保存最优路径
//#include <stdio.h>
//#include <algorithm>
//#include <iostream>
//using namespace std;
//
//#define MAX 605
//int n, len, L[MAX];
//
//struct Path
//{
// int num;
// int len;
// int p[MAX];
//}maxPath;
//
//int cmp(int a, int b)
//{
// return a < b;
//}
//
////DFS,index为当前处理的物品编号
//void DFS(int index,Path cur)
//{
// if (cur.len > len) return;//长度超了
// if ((cur.num + len - index) < maxPath.num) return;//即使是装了剩下的所有程序也无法成为最优
// if (index == n)
// { //已经完成了对n件物品的选择
// if (cur.num > maxPath.num || (cur.num == maxPath.num && maxPath.len < maxPath.len))
// maxPath = cur;
// return;
// }
// DFS(index + 1, cur);//不选择第index件物品
//
// cur.p[cur.num++] = L[index];cur.len += L[index];
// DFS(index + 1, cur);
//
//}
//
//int main()
//{
// while (scanf("%d %d", &n, &len))
// {
//
// for (int i = 0; i < n; i++) scanf("%d", &L[i]);
//
// sort(L, L + n, cmp);
//
// Path p;
// p.len = 0;
// p.num = 0;
// DFS(0, p);
//
// printf("%d %d\n", maxPath.num, maxPath.len);
// for (int i = 0; i < maxPath.num; i++)
// if (i != n - 1) printf("%d ", maxPath.p[i]);
// else printf("%d\n", maxPath.p[i]);
//
// }
//
// return 0;
//}
// //WA解决办法:保存排序索引 //#include <iostream>
//#include <cstring>
//#include <algorithm>
//using namespace std;
//
//const int MAX = 605;
//int n, len, L[MAX],ind[MAX];
//
//struct Path
//{
// int num;
// int len;
// int p[MAX];
// int inx[MAX];
//
//}maxPath;
//
//void BubbleSort(int *p, int length, int * ind_diff)
//{
// for (int m = 0; m < length; m++)
// {
// ind_diff[m] = m;
// }
//
// for (int i = 0; i < length; i++)
// {
// for (int j = 0; j < length - i - 1; j++)
// {
// if (p[j] > p[j + 1])
// {
// int temp = p[j];
// p[j] = p[j + 1];
// p[j + 1] = temp;
//
// int ind_temp = ind_diff[j];
// ind_diff[j] = ind_diff[j + 1];
// ind_diff[j + 1] = ind_temp;
// }
// }
// }
//}
//
////DFS,index为当前处理的物品编号
//void DFS(int index, Path cur)
//{
// if (cur.len > len) return;//长度超了
// if (index == n)
// { //已经完成了对n件物品的选择
// if (cur.num > maxPath.num || (cur.num == maxPath.num && maxPath.len < maxPath.len))
// maxPath = cur;
// return;
// }
// DFS(index + 1, cur);//不选择第index件物品
//
// cur.p[cur.num] = L[index]; cur.len += L[index], cur.inx[cur.num++] = ind[index];
// DFS(index + 1, cur);
//
//}
//
//int cmp(int a, int b)
//{
// return a < b;
//}
//
//int main()
//{
// while (cin>>n>>len)
// {
//
// for (int i = 0; i < n; i++) cin >> L[i];
//
// int *save = new int[MAX];
// memcpy(save, L, sizeof(L));
//
// BubbleSort(L, n, ind);
//
// Path p;
// p.len = 0;
// p.num = 0;
// DFS(0, p);
//
// cout << maxPath.num << " " << maxPath.len << endl;
//
// int *inx = new int[MAX];
// memcpy(inx, maxPath.inx, sizeof(maxPath.inx));
//
// for (int i = 0; i < maxPath.num; i++)
// if (i != maxPath.num - 1) cout << inx[i] << " ";
// else cout << inx[i] << endl;
//
// sort(inx, inx + maxPath.num, cmp);
//
// for (int i = 0; i < maxPath.num; i++)
// if (i != maxPath.num - 1) cout << save[inx[i]] << " ";
// else cout << save[inx[i]] << endl;
//
// }
//
// return 0;
//} //超时解决办法:换用贪心算法
//结果还是超时。。。。。
#include <iostream>
#include <cstring>
#include <algorithm>
using namespace std; const int MAX = ;
int n, len, L[MAX], save[MAX], mnum; struct Path
{
int num;
int len;
int p[MAX]; }maxPath; //DFS,index为当前处理的物品编号
void DFS(int index, Path cur, int remain)
{
if (cur.num == mnum)
{ //已经选择mnum件物品
if (cur.len > maxPath.len && cur.len <= len)
maxPath = cur;
return;
} if (index >= n) return; if (cur.len + remain < maxPath.len) return; //if (cur.len + L[index] > len) return;这不应该加,如果加了大于len长度的不选和选择两种DFS都没有机会了,就丧失了不选之后的DFS遍历,结果就少了。
//至少不应该加在这里 DFS(index + , cur, remain - L[index]);//不选择第index件物品 if (cur.len + L[index] <= len)
{
cur.len += L[index]; cur.p[cur.num++] = L[index];
DFS(index + , cur, remain - L[index]);
}
} int cmp(int a, int b)
{
return a < b;
} //arr,程序长度数组, r,已经使用程序的长度
int find_most(int arr[])
{
sort(arr, arr + n, cmp);
int i = , remain = len;
for (; i < n; i++)
{
remain -= arr[i];
if (remain <= ) return i;
}
return i;
}
void init(Path &a)
{
a.len = ;
a.num = ;
a.p[a.num] = { }; } int main()
{
while (cin >> n >> len)
{
int remain = ;
for (int i = ; i < n; i++)
{
cin >> L[i];
save[i] = L[i];
remain += L[i];
} //find most program number
mnum = find_most(save); Path cur;
init(cur);
init(maxPath); //init && DFS
DFS(, cur, remain); //print ans
cout << mnum << " " << maxPath.len << endl;
for (int i = ; i < maxPath.num; i++)
if (i != maxPath.num - ) cout << maxPath.p[i] << " ";
else cout << maxPath.p[i] << endl; } return ;
}

ACM-Maximum Tape Utilization Ratio的更多相关文章

  1. [swustoj 594] Maximum Tape Utilization Ratio

    Maximum Tape Utilization Ratio(0594) Time limit(ms): 1000 Memory limit(kb): 65535 Submission: 467 Ac ...

  2. Managing remote devices

    A method and apparatus for managing remote devices. In one embodiment of the present invention, ther ...

  3. Thinking Clearly about Performance

    http://queue.acm.org/detail.cfm?id=1854041 The July/August issue of acmqueue is out now acmqueue is ...

  4. Java theory and practice: Thread pools and work queues--reference

    Why thread pools? Many server applications, such as Web servers, database servers, file servers, or ...

  5. Android——内存调试

    因调试某个重大问题,怀疑到了内存,专门写了个測试脚本.记录一下. 撰写不易,转载请注明出处:http://blog.csdn.net/jscese/article/details/37928823 一 ...

  6. Scoring and Modeling—— Underwriting and Loan Approval Process

    https://www.fdic.gov/regulations/examinations/credit_card/ch8.html Types of Scoring FICO Scores    V ...

  7. Dalvik虚拟机垃圾收集(GC)过程分析

    前面我们分析了Dalvik虚拟机堆的创建过程,以及Java对象在堆上的分配过程. 这些知识都是理解Dalvik虚拟机垃圾收集过程的基础.垃圾收集是一个复杂的过程,它要将那些不再被引用的对象进行回收.一 ...

  8. Hypervisor, computer system, and virtual processor scheduling method

    A hypervisor calculates the total number of processor cycles (the number of processor cycles of one ...

  9. Analysis of requirement specification of parking management system

    Analysis of requirement specification of parking management system PURPOSE OF THE SYSTEM The parking ...

随机推荐

  1. 吴裕雄 Bootstrap 前端框架开发——Bootstrap 辅助类:"text-danger" 类的文本样式

    <!DOCTYPE html> <html> <head> <meta charset="utf-8"> <title> ...

  2. mysql 提取 schema,table,column names

    参考: https://dzone.com/articles/how-use-linkedin-market-your 表空间信息 https://coderanch.com/t/300498/dat ...

  3. JS之如何将Promise.then的值直接return出来

    不可能直接将Promise.then的值直接return出来,只能return出Promise对象,然后继续.then去操作异步请求得到的值.

  4. [转载]Spring下IOC容器和DI(依赖注入) @Bean及@Autowired

    Spring下IOC容器和DI(依赖注入) @Bean及@Autowired自动装配 bean是什么 bean在spring中可以理解为一个对象.理解这个对象需要换一种角度,即可将spring看做一门 ...

  5. LUOGU P6034 Ryoku与最初之人笔记 简要题解

    比赛的时候有个地方忘记取模怒砍80,调了一下午Orz(虽然我总共貌似就打这个比赛半个多小时 我们一眼看到涉及到公约数/同余 和 xor,所以我们想到了一些关于xor的性质 a+b >= a xo ...

  6. Ubuntu flatabulous 主题

    在终端输入以下指令 sudo apt-get update sudo apt-get upgrade sudo apt-get install unity-tweak-tool//安装unity tw ...

  7. 【Game学习随笔01】挑战任务01

    今天是2020年2月6日,时间过得好快,以至于我在写到时间会下意识写成2019年…… 看来全国肺炎情况进一步升温了,以至于我家所在的小区进行了命令封锁通知,所以出行不再像以前那么自由了,不管怎样,给战 ...

  8. 使用Spring Cloud Gateway保护反应式微服务(一)

    反应式编程是使你的应用程序更高效的一种越来越流行的方式.响应式应用程序异步调用响应,而不是调用资源并等待响应.这使他们可以释放处理能力,仅在必要时执行处理,并且比其他系统更有效地扩展. Java生态系 ...

  9. 第1节 IMPALA:6、yum源制作过程

    impala的安装:第一步:下载5个G的安装包,并且上传linux,解压第二步:安装httpd的服务,并启动,访问httpd就是访问我们linux的 /var/www/html这个路径下面的东西第三步 ...

  10. LabVIEW面向对象的ActorFramework(1)

    本系列文章主要阐述以下几个问题: (1)什么是面向对象编程? (2)为什么要学习面向编程? (3)LabVIEW面向编程学习为什么有点难? (4)LabVIEW面向对象的编程架构:Actor Fram ...