疯子的算法总结(九) 图论中的矩阵应用 Part 2 矩阵树 基尔霍夫矩阵定理 生成树计数 Matrix-Tree
定理:
1.设G为无向图,设矩阵D为图G的度矩阵,设C为图G的邻接矩阵。
2.对于矩阵D,D[i][j]当 i!=j 时,是一条边,对于一条边而言无度可言为0,当i==j时表示一点,代表点i的度。
即:
3.对于矩阵C而言,C表示两点之间是否存在边,当i==j时为一点无边可言为0,即:
4.定义基尔霍夫矩阵J为度数矩阵D-邻接矩阵C,即J=D-C;
5.G图生成树的数量为任意矩阵J的N-1阶主子式的行列式的绝对值。
证明:
伪证明,不是证明基尔霍夫定理,而是讲一下原理,证明超过我们所需要使用的范畴。
首先明确一点就是若图G是一颗树,他的基尔霍夫矩阵的N-1阶行列式的值1;因为是一棵树,所以不含有环,且两点之间就只有一条边相连,任意列任意行只有1,且度数矩阵与之对应密切,一个点的度数只和自己的变数有关,且不与其他边相连,度数和为2*N,边数为N,且能通过高斯消元化为上三角行列式,即讨论J矩阵中能够构成多少个该子树,即为求矩阵N-1阶主子式的行列式,注意任意一个图的J基尔霍夫矩阵的行列式值都为0;
实现方式:
就是求这个行列,行列式求得方法是高斯消元,其实就是将行列式化为上三角行列式,这个那份线性代数里讲的挺清楚的,不要被名字吓到。
bool zero(double a)
{
return a>-eps && a<eps;
}
double Gauss()
{
double mul,Result=1;
int i,j,k,b[n];
for(i=0;i<n;i++) b[i]=i;
for(i=0;i<n;i++){
if(zero(a[b[i]][i]))
for(j=i+1;j<n;j++)
if(!zero(a[b[j]][i])) { swap(b[i],b[j]); Result*=-1; break; }
Result*=a[b[i]][i];
for(j=i+1;j<n;j++)
if(!zero(a[b[j]][i])){
mul=a[b[j]][i]/a[b[i]][i];
for(k=i;k<n;k++)
a[b[j]][k]-=a[b[i]][k]*mul;
}
}
return Result;
}
疯子的算法总结(九) 图论中的矩阵应用 Part 2 矩阵树 基尔霍夫矩阵定理 生成树计数 Matrix-Tree的更多相关文章
- 疯子的算法总结(九) 图论中的矩阵应用 Part 1+POJ3613 Cow Relays
图的存储有邻接矩阵,那么他就具备一些矩阵的性质,设有一个图的demo[100][100];那么demo[M][N]就是M—>N的距离,若经过一次松弛操作demo[M][N]=demo[M][K] ...
- 【算法】关于图论中的最小生成树(Minimum Spanning Tree)详解
本节纲要 什么是图(network) 什么是最小生成树 (minimum spanning tree) 最小生成树的算法 什么是图(network)? 这里的图当然不是我们日常说的图片或者地图.通常情 ...
- word2vec 中的数学原理二 预备知识 霍夫曼树
主要参考: word2vec 中的数学原理详解 自己动手写 word2vec 编码的话,根是不记录在编码中的 这一篇主要讲的就是霍夫曼树(最优二叉树)和编码. ...
- 【算法】Matrix - Tree 矩阵树定理 & 题目总结
最近集中学习了一下矩阵树定理,自己其实还是没有太明白原理(证明)类的东西,但想在这里总结一下应用中的一些细节,矩阵树定理的一些引申等等. 首先,矩阵树定理用于求解一个图上的生成树个数.实现方式是:\( ...
- OpenCV中的霍夫线变换和霍夫圆变换
一.霍夫线变换 霍夫线变换是OpenCv中一种寻找直线的方法,输入图像为边缘二值图. 原理: 一条直线在图像二维空间可由两个变量表示, 例如: 1.在 笛卡尔坐标系: 可由参数: (m,b) 斜率和截 ...
- 图论中最优树问题的LINGO求解
树:连通且不含圈的无向图称为树.常用T表示.树中的边称为树枝,树中度为1的顶点称为树叶. 生成树:若T是包含图G的全部顶点的子图,它又是树,则称T是G的生成树. 最小生成树:设T=(V,E1)是赋权图 ...
- ZeroMQ接口函数之 :zmq_z85_decode – 从一个用Z85算法生成的文本中解析出二进制密码
ZeroMQ 官方地址 :http://api.zeromq.org/4-0:zmq_z85_decode zmq_z85_decode(3) ØMQ Manual - ØMQ/4.1 ...
- 使用 FP-growth 算法高效挖掘海量数据中的频繁项集
前言 对于如何发现一个数据集中的频繁项集,前文讲解的经典 Apriori 算法能够做到. 然而,对于每个潜在的频繁项,它都要检索一遍数据集,这是比较低效的.在实际的大数据应用中,这么做就更不好了. 本 ...
- 相机标定:关于用Levenberg-Marquardt算法在相机标定中应用
LM算法在相机标定的应用共有三处. (1)单目标定或双目标定中,在内参固定的情况下,计算最佳外参.OpenCV中对应的函数为findExtrinsicCameraParams2. (2)单目标定中,在 ...
随机推荐
- Flask 入门(七)
flask操作数据库:建表: 承接上文: 修改main.py中的代码如下: #encoding:utf-8 from flask_sqlalchemy import SQLAlchemy from f ...
- 十年测试老鸟告诉你--自动化测试选JAVA还是选Python--写给还在迷茫中的朋友
一.前言 Python和Java哪个更适合做自动化测试?这是很多测试工程师从功能跨入自动化纠结的问题,今天测试老鸟来带大家详细分析一下!写给还在迷茫中的朋友! 首先可以确认的是提出这个问题的肯定是一个 ...
- HBase-2.2.3源码编译-Windows版
源码环境一览 windows: 7 64Bit Java: 1.8.0_131 Maven:3.3.9 Git:2.24.0.windows.1 HBase:2.2.3 Hadoop:2.8.5 下载 ...
- flex实现三列布局
css3新引入的flex在某些情况下布局非常实用 因为它是弹性盒子所以自适应效果会很棒 不过各项布局方案还是各有优劣 <!DOCTYPE html> <html lang=" ...
- 初识指令重排序,Java 中的锁
本文是作者原创,版权归作者所有.若要转载,请注明出处.本文只贴我觉得比较重要的源码 指令重排序 Java语言规范JVM线程内部维持顺序化语义,即只要程序的最终结果与它顺序化情况的结果相等,那么指令的执 ...
- 曹工说Redis源码(7)-- redis server 的周期执行任务,到底要做些啥
文章导航 Redis源码系列的初衷,是帮助我们更好地理解Redis,更懂Redis,而怎么才能懂,光看是不够的,建议跟着下面的这一篇,把环境搭建起来,后续可以自己阅读源码,或者跟着我这边一起阅读.由于 ...
- Redisson 实现分布式锁的原理分析
写在前面 在了解分布式锁具体实现方案之前,我们应该先思考一下使用分布式锁必须要考虑的一些问题. 互斥性:在任意时刻,只能有一个进程持有锁. 防死锁:即使有一个进程在持有锁的期间崩溃而未能主动释放锁, ...
- vue2.x学习笔记(十五)
接着前面的内容:https://www.cnblogs.com/yanggb/p/12609450.html. 组件的自定义事件 这里来学习一下组件中的自定义事件. 事件名 不同于组件名和prop,事 ...
- gitbook命令
安装gitbook命令 前提:已经安装nodejs npm install -g gitbook-cli 查看版本号 gitbook -V gitbook命令 gitbook -h Usage: gi ...
- UnicodeDecodeError: 'gbk' codec can't decode byte 0x8a in position 2: illegal multibyte sequence
pycharm报错UnicodeDecodeError: 'gbk' codec can't decode byte 0x8a in position 2: illegal multibyte seq ...