定理:

1.设G为无向图,设矩阵D为图G的度矩阵,设C为图G的邻接矩阵。

2.对于矩阵D,D[i][j]当 i!=j 时,是一条边,对于一条边而言无度可言为0,当i==j时表示一点,代表点i的度。

即:

3.对于矩阵C而言,C表示两点之间是否存在边,当i==j时为一点无边可言为0,即:

4.定义基尔霍夫矩阵J为度数矩阵D-邻接矩阵C,即J=D-C;

5.G图生成树的数量为任意矩阵J的N-1阶主子式的行列式的绝对值。

证明:

伪证明,不是证明基尔霍夫定理,而是讲一下原理,证明超过我们所需要使用的范畴。

首先明确一点就是若图G是一颗树,他的基尔霍夫矩阵的N-1阶行列式的值1;因为是一棵树,所以不含有环,且两点之间就只有一条边相连,任意列任意行只有1,且度数矩阵与之对应密切,一个点的度数只和自己的变数有关,且不与其他边相连,度数和为2*N,边数为N,且能通过高斯消元化为上三角行列式,即讨论J矩阵中能够构成多少个该子树,即为求矩阵N-1阶主子式的行列式,注意任意一个图的J基尔霍夫矩阵的行列式值都为0;

实现方式:

就是求这个行列,行列式求得方法是高斯消元,其实就是将行列式化为上三角行列式,这个那份线性代数里讲的挺清楚的,不要被名字吓到。

bool zero(double a)
{
return a>-eps && a<eps;
}
double Gauss()
{
double mul,Result=1;
int i,j,k,b[n];
for(i=0;i<n;i++) b[i]=i;
for(i=0;i<n;i++){
if(zero(a[b[i]][i]))
for(j=i+1;j<n;j++)
if(!zero(a[b[j]][i])) { swap(b[i],b[j]); Result*=-1; break; }
Result*=a[b[i]][i];
for(j=i+1;j<n;j++)
if(!zero(a[b[j]][i])){
mul=a[b[j]][i]/a[b[i]][i];
for(k=i;k<n;k++)
a[b[j]][k]-=a[b[i]][k]*mul;
}
}
return Result;
}

疯子的算法总结(九) 图论中的矩阵应用 Part 2 矩阵树 基尔霍夫矩阵定理 生成树计数 Matrix-Tree的更多相关文章

  1. 疯子的算法总结(九) 图论中的矩阵应用 Part 1+POJ3613 Cow Relays

    图的存储有邻接矩阵,那么他就具备一些矩阵的性质,设有一个图的demo[100][100];那么demo[M][N]就是M—>N的距离,若经过一次松弛操作demo[M][N]=demo[M][K] ...

  2. 【算法】关于图论中的最小生成树(Minimum Spanning Tree)详解

    本节纲要 什么是图(network) 什么是最小生成树 (minimum spanning tree) 最小生成树的算法 什么是图(network)? 这里的图当然不是我们日常说的图片或者地图.通常情 ...

  3. word2vec 中的数学原理二 预备知识 霍夫曼树

    主要参考:    word2vec 中的数学原理详解                 自己动手写 word2vec 编码的话,根是不记录在编码中的 这一篇主要讲的就是霍夫曼树(最优二叉树)和编码.  ...

  4. 【算法】Matrix - Tree 矩阵树定理 & 题目总结

    最近集中学习了一下矩阵树定理,自己其实还是没有太明白原理(证明)类的东西,但想在这里总结一下应用中的一些细节,矩阵树定理的一些引申等等. 首先,矩阵树定理用于求解一个图上的生成树个数.实现方式是:\( ...

  5. OpenCV中的霍夫线变换和霍夫圆变换

    一.霍夫线变换 霍夫线变换是OpenCv中一种寻找直线的方法,输入图像为边缘二值图. 原理: 一条直线在图像二维空间可由两个变量表示, 例如: 1.在 笛卡尔坐标系: 可由参数: (m,b) 斜率和截 ...

  6. 图论中最优树问题的LINGO求解

    树:连通且不含圈的无向图称为树.常用T表示.树中的边称为树枝,树中度为1的顶点称为树叶. 生成树:若T是包含图G的全部顶点的子图,它又是树,则称T是G的生成树. 最小生成树:设T=(V,E1)是赋权图 ...

  7. ZeroMQ接口函数之 :zmq_z85_decode – 从一个用Z85算法生成的文本中解析出二进制密码

    ZeroMQ 官方地址 :http://api.zeromq.org/4-0:zmq_z85_decode zmq_z85_decode(3)         ØMQ Manual - ØMQ/4.1 ...

  8. 使用 FP-growth 算法高效挖掘海量数据中的频繁项集

    前言 对于如何发现一个数据集中的频繁项集,前文讲解的经典 Apriori 算法能够做到. 然而,对于每个潜在的频繁项,它都要检索一遍数据集,这是比较低效的.在实际的大数据应用中,这么做就更不好了. 本 ...

  9. 相机标定:关于用Levenberg-Marquardt算法在相机标定中应用

    LM算法在相机标定的应用共有三处. (1)单目标定或双目标定中,在内参固定的情况下,计算最佳外参.OpenCV中对应的函数为findExtrinsicCameraParams2. (2)单目标定中,在 ...

随机推荐

  1. java文件中出现最多的前n个单词

    将文件打开,之后每读入一次,最后按空格进行分割.存入到map里面之后进行相应的比较输出操作.并将相应的内容输出到文件里面. package com.keshangone; //将想要输出的数据写入新的 ...

  2. flask入门 之 Python Shell (三)

    1.代码: #encoding:utf-8 from flask_sqlalchemy import SQLAlchemy from flask_script import Manager,Shell ...

  3. openpyxl 模块 读写Excel

    import openpyxl #写到execl中def write_execl(): book=openpyxl.Workbook() sheet=book.active #获取默认sheet # ...

  4. Python 1基础语法四(数字类型、输入输出汇总和命令行参数)

    一.数字(Number)类型 python中数字有四种类型:整数.布尔型.浮点数和复数. int (整数), 如 1, 只有一种整数类型 int,表示为长整型,没有 python2 中的 Long. ...

  5. SQL基础系列(4)-性能优化建议

    10.1 连接查询表的顺序问题 SQLSERVER的解析器按照从右到左的顺序处理FROM子句中的表名,因此FROM子句中写在最后的表(基础表driving table)将被最先处理,在FROM子句中包 ...

  6. 八、路由详细介绍之动态路由OSPF(重点)

    一.OSPF介绍 OSPF优点:无环路.收敛快.扩展性好.支持认证 二.工作原理: 图中RTA.RTB.RTC每个路由器都会生成一个LSA, 通过LSA泛洪进行互相发送相互学习,形成LSDB (链路状 ...

  7. std::string::substr函数

    string substr (size_t pos = 0, size_t len = npos) const;

  8. AJ学IOS(56)网络基础以及如何搭建服务器

    AJ分享,必须精品 一:为什么要学习网络编程 关于这个问题,为什么要学习网络编程,AJ的理解就是,这东西是时代发展的必要,没什么为什么,就是应该学,除非你就是想玩单机,但是就算是单机也会有购买金币之类 ...

  9. L12 Transformer

    Transformer 在之前的章节中,我们已经介绍了主流的神经网络架构如卷积神经网络(CNNs)和循环神经网络(RNNs).让我们进行一些回顾: CNNs 易于并行化,却不适合捕捉变长序列内的依赖关 ...

  10. U - Obtain a Permutation CodeForces - 1294E 思维

    题解: 注意每一列与每一列之间互不影响,所以贪心地求出没一列的最小操作值,然后累加起来. 怎么求没一列的最小值呢?维护一个数组same表示其中same[i]=j表示将该序列向上翻滚i次有j个元素归位, ...