感知融合 awesome list

雷达聚类

  • 雷达处理杂波滤除 CFAR (Constant False Alarm Rate):Lee, Jae-Eun, et al. "Harmonic clutter recognition and suppression for automotive radar sensors." International Journal of Distributed Sensor Networks 13.9 (2017):1550147717729793.

  • 德州仪器详尽雷达资料: Tracking radar targets with multiple reflection points (Texas Instruments)

  • 雷达鬼影检测: Sole, Amir, et al. "Solid or not solid: Vision for radar target validation." IEEE Intelligent Vehicles Symposium, 2004. IEEE, 2004.

目标匹配

  • 目标级融合详细步骤 Chavez-Garcia, Ricardo Omar, and Olivier Aycard. "Multiple sensor fusion and classification for moving object detection and tracking." IEEE Transactions on Intelligent Transportation Systems 17.2 (2015): 525-534.

  • 摄像头雷达融合: Darms, Michael S., Paul E. Rybski, Christopher Baker, and Chris Urmson. "Obstacle detection and tracking for the urban challenge." IEEE Transactions on intelligent transportation systems 10, no. 3 (2009): 475-485.

  • 激光雷达摄像头融合: Ziguo Zhong, Stanley Liu, Manu Mathew, and Aish Dubey.“Camera Radar Fusion for Increased Reliability in

    ADAS Applications”. Electronic Imaging 2018.17 (2018):

自动泊车

  • 同济车位识别详细步骤和数据集 Li, Linshen, et al. "Vision-based parking-slot detection: A benchmark and a learning-based approach." 2017 IEEE International Conference on Multimedia and Expo (ICME). IEEE, 2017.

  • 同济深度学习角点检测算法:Zhang, Lin, et al. "Vision-based parking-slot detection: A DCNN-based approach and a large-scale benchmark dataset." IEEE Transactions on Image Processing 27.11 (2018): 5350-5364.

  • 分割 Wu, Yan, et al. "VH-HFCN based Parking Slot and Lane Markings Segmentation on Panoramic Surround View." 2018 IEEE Intelligent Vehicles Symposium (IV). IEEE, 2018.

  • vslam: Huang, Yewei, et al. "Vision-based Semantic Mapping and Localization for Autonomous Indoor Parking." 2018 IEEE Intelligent Vehicles Symposium (IV). IEEE, 2018

  • 超声波信号处理:Shao, Yunfeng, Pengzhen Chen, and Tongtong Cao. "A Grid Projection Method Based on Ultrasonic Sensor for Parking Space Detection." IGARSS 2018-2018 IEEE International Geoscience and Remote Sensing Symposium. IEEE, 2018.

  • 融合:Suhr, Jae Kyu, and Ho Gi Jung. "Sensor fusion-based vacant parking slot detection and tracking." IEEE Transactions on Intelligent Transportation Systems 15.1 (2013): 21-36.

车道线

  • Bosch车道线识别: Klotz, Albrecht, Jan Sparbert, and Dieter Hoetzer. "Lane data fusion for driver assistance systems." Proc. 7th International Conference on Information Fusion, Stockholm, Sweden. 2004.

  • 车辆与车道线关系: Nguyen, VanQuang, et al. "A study on real-time detection method of lane and vehicle for lane change assistant system using vision system on highway." Engineering science and technology, an international journal 21.5 (2018): 822-833.

  • 深度学习方法lanenet: Neven, Davy, et al. "Towards end-to-end lane detection: an instance segmentation approach." 2018 IEEE intelligent vehicles symposium (IV). IEEE, 2018.

  • 车道定位 Real-Time Global Localization of Robotic Cars in Lane Level via Lane Marking Detection and Shape Registration Dixiao Cui, Jianru 4 Xue, Member, IEEE, and Nanning Zheng, Fellow, IEEE

态势预估

  • cut-in预测,通过特征工程与机器学习预测切入目标:Heinemann, Tonja. Predicting cut-ins in traffic using a neural network. MS thesis. 2017.

  • Zhu, Ying, et al. "Reliable detection of overtaking vehicles using robust information fusion." IEEE Transactions on Intelligent Transportation Systems 7.4 (2006): 401-414.

激光雷达

  • ego-motion估计自车位置: Hoang, Berntsson. "Localisation using LiDAR and Camera." MS thesis. 2017.

  • 车辆检测pipeline:Du, Xinxin, et al. "A general pipeline for 3d detection of vehicles." 2018 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2018.

  • 博士论文:Zhongzhen Luo, LiDAR Based Perception System: Pioneer Technology for Safety Driving

  • 相机融合:Car Detection for Autonomous Vehicle: LIDAR and Vision Fusion Approach Through Deep Learning Framework, Xinxin Du, Marcelo H. Ang Jr. and Daniela Rus

  • 标定: Improvements to Target-Based 3D LiDAR to Camera Calibration, Jiunn-Kai Huang and Jessy W. Grizzle

机器视觉

  • SOC系统设计: Zhou, Yuteng. "Computer Vision System-On-Chip Designs for Intelligent Vehicles." (2018).

  • mobiley测距单目测速测距:Stein, Gideon P., Ofer Mano, and Amnon Shashua. "Vision-based ACC with a single camera: bounds on range and range rate accuracy." IEEE IV2003 Intelligent Vehicles Symposium. Proceedings (Cat. No. 03TH8683). IEEE, 2003.

  • mobileye行人检测:Pedestrian Detection for Driving Assistance Systems: Single-frame Classification

    and System Level Performance

SLAM

  • GraphSLAM: Sebastian Thrun, Michael Montemerlo. "The GraphSLAM Algorithm with Applications to Large-Scale Mapping of Urban Structures"

深度学习

  • resnet: He, Kaiming, et al. "Deep residual learning for image recognition." Proceedings of the IEEE conference on computer vision and pattern recognition. 2016.

  • yolo目标检测:Redmon, Joseph, et al. "You only look once: Unified, real-time object detection." Proceedings of the IEEE conference on computer vision and pattern recognition. 2016.

  • feature可视化:Zeiler, Matthew D., and Rob Fergus. "Visualizing and understanding convolutional networks." European conference on computer vision. Springer, Cham, 2014.

  • 速度效果trade-off:Huang, Jonathan, et al. "Speed/accuracy trade-offs for modern convolutional object detectors." Proceedings of the IEEE conference on computer vision and pattern recognition. 2017.

场景识别

  • 场景综述:Xue, Jian-Ru, Jian-Wu Fang, and Pu Zhang. "A survey of scene understanding by event reasoning in autonomous driving." International Journal of Automation and Computing 15.3 (2018): 249-266.

  • 动作识别: Simonyan K, Zisserman A. Two-stream convolutional networks for action recognition in videos. In: Proceedings of Advances in Neural Information Processing Systems. Red Hook, NY: Curran Associates, Inc., 2014. 568-576

  • fcn街景分割:Zhang Y, Qiu Z, Yao T, et al. Fully convolutional adaptation networks for semantic segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2018: 6810-6818.

系统设计

  • ADAS handbook: Hermann Winner, Stephan Hakuli, Felix Lotz, Christina Singer.

    “Handbook of Driver Assistance Systems" (2016)

  • 系统从需求功能到详细设计Automotive Systems Engineering, Markus Maurer, Hermann Winner

感知融合 awesome list的更多相关文章

  1. SystemML大规模机器学习,优化算子融合方案的研究

    SystemML大规模机器学习,优化算子融合方案的研究 摘要 许多大规模机器学习(ML)系统允许通过线性代数程序指定定制的ML算法,然后自动生成有效的执行计划.在这种情况下,优化的机会融合基本算子的熔 ...

  2. 百度Apollo无人驾驶入门课程下载

    本文提供 百度Apollo官网的无人驾驶入门课程下载,主要为视频文件. 视频数量:101个:文件格式:MP4:视频总时长:2小时40分钟:文件总大小:约1.13GB: 马上下载 关注公众号罗孚传说(R ...

  3. Mobileye 自动驾驶策略(一)

    Mobileye 自动驾驶策略(一) 详解 Mobileye 自动驾驶解决方案 Mobileye的自动驾驶解决方案.总得来说,分为四种: Visual perception and sensor fu ...

  4. 13万字详细分析JDK中Stream的实现原理

    前提 Stream是JDK1.8中首次引入的,距今已经过去了接近8年时间(JDK1.8正式版是2013年底发布的).Stream的引入一方面极大地简化了某些开发场景,另一方面也可能降低了编码的可读性( ...

  5. SLAM+语音机器人DIY系列:(三)感知与大脑——2.带自校准九轴数据融合IMU惯性传感器

    摘要 在我的想象中机器人首先应该能自由的走来走去,然后应该能流利的与主人对话.朝着这个理想,我准备设计一个能自由行走,并且可以与人语音对话的机器人.实现的关键是让机器人能通过传感器感知周围环境,并通过 ...

  6. 【Apollo自动驾驶源码解读】车道线的感知和高精地图融合

    模式选择 在modules/map/relative_map/conf/relative_map_config.pb.txt文件中对模式进行修改: lane_source: OFFLINE_GENER ...

  7. 什么是业务运维,企业如何实现互联网+业务与IT的融合

    业务运维并不是一个新概念,针对传统信息架构提出的业务服务管理就是把以业务为核心的IT系统与IT基础设施性能进行整合运维的解决方案.然而随着互联网+转型的不断推进,基础设施的智能化和广泛云化成为IT发展 ...

  8. CTO对话:云端融合下的移动技术创新

    云端融合真的来了?快听CTO们怎么讲云端融合下,技术创新怎么破? 快听CTO箴言  云喊了很多年,对于很多普通的技术人,心中有很多疑问:云端融合到底意味着什么,对公司的技术体系有什么影响,未来又会走向 ...

  9. FNN模糊神经网络——信息系统客户服务感知评价

    案例描述 信息系统是否真正减轻业务人员的日常工作量提高工作效率?如何从提供“被动”服务转变为根据客户感知提供“主动”服务,真正实现电网企业对信息系统服务的有效管理?如何构建一套适合企业的信息系统客户服 ...

随机推荐

  1. IOS App如何调用python后端服务

    本篇文章旨在通过一个小的Demo形式来了解ios app是如何调用python后端服务的,以便我们在今后的工作中可以清晰的明白ios app与后端服务之间是如何实现交互的,今天的示例是拿登录功能做一个 ...

  2. 欧几里得算法求最大公约数-《Algorithms Fourth Edition》第1章

    最大公约数(Greatest Common Divisor, GCD),是指2个或N个整数共有约数中最大的一个.a,b的最大公约数记为(a, b).相对应的是最小公倍数,记为[a, b]. 在求最大公 ...

  3. kworkerds挖矿木马

    昨天一朋友的公司服务器中了挖矿病毒,一起帮忙查看并做下记录.   病毒信息 名称:kworkerds 目录:/tmp/ 关键点:文件 -i 属性   i :这个i可就很厉害了.它可以让一个文件“不能被 ...

  4. C语言视频教程下载(百万年薪程序员录制,免费公开)

    <C/C++语言高性能服务开发基础>您可以自由下载.传播.发布或其它商业用途. 视频文件共13.6G,提供了QQ群文件和百度网盘两种方法,建议采用QQ群文件下载,速度较快. 一.下载方法 ...

  5. [转] CISC与RISC

    点击阅读原文      这里就不去管细节,简单来谈一下,ARM和X86之间为什么不太具有可比性的问题.要搞清楚这个问题首先要明白什么是架构,之前也有很多人提到了架构不同,但架构是什么意思?它是一个比较 ...

  6. Nginx深入浅出

    一级标题为思维导图的链接 :) 1. Nginx简介 1.1 nginx概述 说明(C10K) 程序架构(master/worker) nginx的特性 文件并发处理(异步.事件驱动)epoll / ...

  7. (二)HttpClient Post请求

    原文链接:https://blog.csdn.net/justry_deng/article/details/81042379 POST无参: /** * POST---无参测试 * * @date ...

  8. IE11下文档模式默认值是7, 而且无法更改

    IE9以上是支持css3的,但是有的IE11的浏览器里面,文档模式默认值是7,而且是无法改变的,就会导致网页布局错乱 我的IE11的文档模式默认值是11 ,如下图  (打开页面按F12) 对于默认值是 ...

  9. 11.DRF-权限

    Django rest framework源码分析(2)----权限 添加权限 (1)API/utils文件夹下新建premission.py文件,代码如下: message是当没有权限时,提示的信息 ...

  10. 第十章:RDB持久化

    RDB 保存命令 save 命令,阻塞 Redis 服务器进程,直到保存动作完成: bgsave 命令,派生出一个子进程来完成保存动作: 载入命令 Redis 没有载入 RDB 文件的命令,载入动作在 ...