先划分数据集程序训练集中猫狗各12500张现在提取1000张做为训练集,500张作为测试集,500张作为验证集:

# -*- coding: utf-8 -*-
import os, shutil original_dataset_dir = '/home/duchao/projects(my)/keras/kagge/train' # 原始文解压目录
base_dir = '/home/duchao/projects(my)/keras/kagge/small_data'
# 创建新的文件夹
os.mkdir(base_dir) # 分别对应划分好的训练(1000),验证(500)和测试目录(500)
train_dir = os.path.join(base_dir, 'train')
os.mkdir(train_dir)
validation_dir = os.path.join(base_dir, 'validation')
os.mkdir(validation_dir)
test_dir = os.path.join(base_dir, 'test')
os.mkdir(test_dir) # 猫的训练目录
train_cats_dir = os.path.join(train_dir, 'cats')
os.mkdir(train_cats_dir) # 狗的训练目录
train_dogs_dir = os.path.join(train_dir, 'dogs')
os.mkdir(train_dogs_dir) # 猫的验证目录
validation_cats_dir = os.path.join(validation_dir, 'cats')
os.mkdir(validation_cats_dir) # 狗的验证目录
validation_dogs_dir = os.path.join(validation_dir, 'dogs')
os.mkdir(validation_dogs_dir) # 猫的测试目录
test_cats_dir = os.path.join(test_dir, 'cats')
os.mkdir(test_cats_dir) # 狗的测试目录
test_dogs_dir = os.path.join(test_dir, 'dogs')
os.mkdir(test_dogs_dir) # 将前1000张猫的图像复制到train_cats_dir
fnames = ['cat.{}.jpg'.format(i) for i in range(1000)] # format函数通过{}来指点字符串处理的位置,储存为列表形式
for fname in fnames:
src = os.path.join(original_dataset_dir, fname)
dst = os.path.join(train_cats_dir, fname)
shutil.copyfile(src, dst) # copyfile实现将一个文件中的内容复制道另一个文件中去,src是来源文件;dst是目标文件 # 将剩下的500张图像复制到validation_cats_dir
fnames = ['cat.{}.jpg'.format(i) for i in range(1000, 1500)]
for fname in fnames:
src = os.path.join(original_dataset_dir, fname)
dst = os.path.join(validation_cats_dir, fname)
shutil.copyfile(src, dst) # 将接下来500张图片复制到test_cats_dir
fnames = ['cat.{}.jpg'.format(i) for i in range(1500, 2000)]
for fname in fnames:
src = os.path.join(original_dataset_dir, fname)
dst = os.path.join(test_cats_dir, fname)
shutil.copyfile(src, dst) # 将前1000张狗的图片复制到train_dogs_dir
fnames = ['dog.{}.jpg'.format(i) for i in range(1000)]
for fname in fnames:
src = os.path.join(original_dataset_dir, fname)
dst = os.path.join(train_dogs_dir, fname)
shutil.copyfile(src, dst) # 将接下来500张图像复制到validation_dogs_dir
fnames = ['dog.{}.jpg'.format(i) for i in range(1000, 1500)]
for fname in fnames:
src = os.path.join(original_dataset_dir, fname)
dst = os.path.join(validation_dogs_dir, fname)
shutil.copyfile(src, dst) # Copy next 500 dog images to test_dogs_dir
fnames = ['dog.{}.jpg'.format(i) for i in range(1500, 2000)]
for fname in fnames:
src = os.path.join(original_dataset_dir, fname)
dst = os.path.join(test_dogs_dir, fname)
shutil.copyfile(src, dst) print('total training cat images:', len(os.listdir(train_cats_dir))) #os.listdir列举指定目录中的文件名
print('total training dog images:', len(os.listdir(train_dogs_dir)))
print('total validation cat images:', len(os.listdir(validation_cats_dir)))
print('total validation dog images:', len(os.listdir(validation_dogs_dir)))
print('total test cat images:', len(os.listdir(test_cats_dir)))
print('total test dog images:', len(os.listdir(test_dogs_dir)))

keras猫狗大战的更多相关文章

  1. keras系列︱Application中五款已训练模型、VGG16框架(Sequential式、Model式)解读(二)

    引自:http://blog.csdn.net/sinat_26917383/article/details/72859145 中文文档:http://keras-cn.readthedocs.io/ ...

  2. 面向小数据集构建图像分类模型Keras

    文章信息 本文地址:http://blog.keras.io/building-powerful-image-classification-models-using-very-little-data. ...

  3. CNN基础一:从头开始训练CNN进行图像分类(猫狗大战为例)

    本文旨在总结一次从头开始训练CNN进行图像分类的完整过程(猫狗大战为例,使用Keras框架),免得经常遗忘.流程包括: 从Kaggle下载猫狗数据集: 利用python的os.shutil库,制作训练 ...

  4. 实战 迁移学习 VGG19、ResNet50、InceptionV3 实践 猫狗大战 问题

    实战 迁移学习 VGG19.ResNet50.InceptionV3 实践 猫狗大战 问题   参考博客:::https://blog.csdn.net/pengdali/article/detail ...

  5. 我的Keras使用总结(2)——构建图像分类模型(针对小数据集)

    Keras基本的使用都已经清楚了,那么这篇主要学习如何使用Keras进行训练模型,训练训练,主要就是“练”,所以多做几个案例就知道怎么做了. 在本文中,我们将提供一些面向小数据集(几百张到几千张图片) ...

  6. [Keras] Develop Neural Network With Keras Step-By-Step

    简单地训练一个四层全连接网络. Ref: http://machinelearningmastery.com/tutorial-first-neural-network-python-keras/ 1 ...

  7. keras 中如何自定义损失函数

    http://lazycoderx.com/2016/10/09/keras%E4%BF%9D%E5%AD%98%E6%A8%A1%E5%9E%8B%E6%97%B6%E4%BD%BF%E7%94%A ...

  8. keras安装

    找对工具真的很重要,周末和学霸折腾了一天才装了几个包,问了同事找了一个方便的包,装起来不要太快啊.二十分钟全部搞定. 一.Anaconda 真是大杀器,牛到飞起来,一键部署,所有常用的机器学习包全部包 ...

  9. ubuntu系统theano和keras的安装

    说明:系统是unbuntu14.04LTS,32位的操作系统,以前安装了python3.4,现在想要安装theano和keras.步骤如下: 1,安装pip sudo apt-get install ...

随机推荐

  1. 【剑指Offer】面试题09. 用两个栈实现队列

    题目 用两个栈实现一个队列.队列的声明如下,请实现它的两个函数 appendTail 和 deleteHead ,分别完成在队列尾部插入整数和在队列头部删除整数的功能.(若队列中没有元素,delete ...

  2. mybatis基础CURD的学习

    <?xml version="1.0" encoding="UTF-8" ?> <!DOCTYPE mapper PUBLIC "- ...

  3. 小程序实现倒计时:解决ios倒计时失效(setInterval失效)

    在使用之前需要先在page页引入wxTimer.js文件(这里我将文件放在/utils) let timer = require('../../utils/wxTimer.js'); 然后就可以使用啦 ...

  4. 了解java常用框架

    今天我看了一点看起来比较片面的东西,java常用基本床架,并且在网上搜了相关的知识和概括总结,用来继续后期的学习: 1.struts2框架,这是最经典的框架(可以说没有“之一”).可以帮你快速搭建出一 ...

  5. content编码

    1.content有5种属性 a.content:“”                     //为空 b.content:attr(TItle)     //可以获取当前选中标签的属性值 eg: ...

  6. Vulkan SDK 之 Depth Buffer

    深度缓冲是可选的,比如渲染一个3D的立方体的时候,就需要用到深度缓冲.Swapchain就算有多个images,此时深度缓冲区也只需要一个.vkCreateSwapchainKHR 会创建所有需要的i ...

  7. 文献阅读报告 - Social GAN: Socially Acceptable Trajectories with Generative Adversarial Networks

    paper:Gupta A , Johnson J , Fei-Fei L , et al. Social GAN: Socially Acceptable Trajectories with Gen ...

  8. sqlserver 存储过程 C#调用 实现从数据库Get数据

    在最近的项目中我想建立一个EFDBfirst的模型但是失败了,生成的edmx中没有实体类和表结构,到处需求解决方案,未果. 问题请见:https://q.cnblogs.com/q/102743/ 后 ...

  9. Windows系统JDK环境变量配置

    一.环境准备 Windows10 jdk1.8.0_144 二.下载并安装JDK 下载 密码: r5ym 三.环境变量配置 首先,打开控制面板>系统和安全>系统,点击高级系统设置进入系统属 ...

  10. 标准JAVA工程结构