先划分数据集程序训练集中猫狗各12500张现在提取1000张做为训练集,500张作为测试集,500张作为验证集:

# -*- coding: utf-8 -*-
import os, shutil original_dataset_dir = '/home/duchao/projects(my)/keras/kagge/train' # 原始文解压目录
base_dir = '/home/duchao/projects(my)/keras/kagge/small_data'
# 创建新的文件夹
os.mkdir(base_dir) # 分别对应划分好的训练(1000),验证(500)和测试目录(500)
train_dir = os.path.join(base_dir, 'train')
os.mkdir(train_dir)
validation_dir = os.path.join(base_dir, 'validation')
os.mkdir(validation_dir)
test_dir = os.path.join(base_dir, 'test')
os.mkdir(test_dir) # 猫的训练目录
train_cats_dir = os.path.join(train_dir, 'cats')
os.mkdir(train_cats_dir) # 狗的训练目录
train_dogs_dir = os.path.join(train_dir, 'dogs')
os.mkdir(train_dogs_dir) # 猫的验证目录
validation_cats_dir = os.path.join(validation_dir, 'cats')
os.mkdir(validation_cats_dir) # 狗的验证目录
validation_dogs_dir = os.path.join(validation_dir, 'dogs')
os.mkdir(validation_dogs_dir) # 猫的测试目录
test_cats_dir = os.path.join(test_dir, 'cats')
os.mkdir(test_cats_dir) # 狗的测试目录
test_dogs_dir = os.path.join(test_dir, 'dogs')
os.mkdir(test_dogs_dir) # 将前1000张猫的图像复制到train_cats_dir
fnames = ['cat.{}.jpg'.format(i) for i in range(1000)] # format函数通过{}来指点字符串处理的位置,储存为列表形式
for fname in fnames:
src = os.path.join(original_dataset_dir, fname)
dst = os.path.join(train_cats_dir, fname)
shutil.copyfile(src, dst) # copyfile实现将一个文件中的内容复制道另一个文件中去,src是来源文件;dst是目标文件 # 将剩下的500张图像复制到validation_cats_dir
fnames = ['cat.{}.jpg'.format(i) for i in range(1000, 1500)]
for fname in fnames:
src = os.path.join(original_dataset_dir, fname)
dst = os.path.join(validation_cats_dir, fname)
shutil.copyfile(src, dst) # 将接下来500张图片复制到test_cats_dir
fnames = ['cat.{}.jpg'.format(i) for i in range(1500, 2000)]
for fname in fnames:
src = os.path.join(original_dataset_dir, fname)
dst = os.path.join(test_cats_dir, fname)
shutil.copyfile(src, dst) # 将前1000张狗的图片复制到train_dogs_dir
fnames = ['dog.{}.jpg'.format(i) for i in range(1000)]
for fname in fnames:
src = os.path.join(original_dataset_dir, fname)
dst = os.path.join(train_dogs_dir, fname)
shutil.copyfile(src, dst) # 将接下来500张图像复制到validation_dogs_dir
fnames = ['dog.{}.jpg'.format(i) for i in range(1000, 1500)]
for fname in fnames:
src = os.path.join(original_dataset_dir, fname)
dst = os.path.join(validation_dogs_dir, fname)
shutil.copyfile(src, dst) # Copy next 500 dog images to test_dogs_dir
fnames = ['dog.{}.jpg'.format(i) for i in range(1500, 2000)]
for fname in fnames:
src = os.path.join(original_dataset_dir, fname)
dst = os.path.join(test_dogs_dir, fname)
shutil.copyfile(src, dst) print('total training cat images:', len(os.listdir(train_cats_dir))) #os.listdir列举指定目录中的文件名
print('total training dog images:', len(os.listdir(train_dogs_dir)))
print('total validation cat images:', len(os.listdir(validation_cats_dir)))
print('total validation dog images:', len(os.listdir(validation_dogs_dir)))
print('total test cat images:', len(os.listdir(test_cats_dir)))
print('total test dog images:', len(os.listdir(test_dogs_dir)))

keras猫狗大战的更多相关文章

  1. keras系列︱Application中五款已训练模型、VGG16框架(Sequential式、Model式)解读(二)

    引自:http://blog.csdn.net/sinat_26917383/article/details/72859145 中文文档:http://keras-cn.readthedocs.io/ ...

  2. 面向小数据集构建图像分类模型Keras

    文章信息 本文地址:http://blog.keras.io/building-powerful-image-classification-models-using-very-little-data. ...

  3. CNN基础一:从头开始训练CNN进行图像分类(猫狗大战为例)

    本文旨在总结一次从头开始训练CNN进行图像分类的完整过程(猫狗大战为例,使用Keras框架),免得经常遗忘.流程包括: 从Kaggle下载猫狗数据集: 利用python的os.shutil库,制作训练 ...

  4. 实战 迁移学习 VGG19、ResNet50、InceptionV3 实践 猫狗大战 问题

    实战 迁移学习 VGG19.ResNet50.InceptionV3 实践 猫狗大战 问题   参考博客:::https://blog.csdn.net/pengdali/article/detail ...

  5. 我的Keras使用总结(2)——构建图像分类模型(针对小数据集)

    Keras基本的使用都已经清楚了,那么这篇主要学习如何使用Keras进行训练模型,训练训练,主要就是“练”,所以多做几个案例就知道怎么做了. 在本文中,我们将提供一些面向小数据集(几百张到几千张图片) ...

  6. [Keras] Develop Neural Network With Keras Step-By-Step

    简单地训练一个四层全连接网络. Ref: http://machinelearningmastery.com/tutorial-first-neural-network-python-keras/ 1 ...

  7. keras 中如何自定义损失函数

    http://lazycoderx.com/2016/10/09/keras%E4%BF%9D%E5%AD%98%E6%A8%A1%E5%9E%8B%E6%97%B6%E4%BD%BF%E7%94%A ...

  8. keras安装

    找对工具真的很重要,周末和学霸折腾了一天才装了几个包,问了同事找了一个方便的包,装起来不要太快啊.二十分钟全部搞定. 一.Anaconda 真是大杀器,牛到飞起来,一键部署,所有常用的机器学习包全部包 ...

  9. ubuntu系统theano和keras的安装

    说明:系统是unbuntu14.04LTS,32位的操作系统,以前安装了python3.4,现在想要安装theano和keras.步骤如下: 1,安装pip sudo apt-get install ...

随机推荐

  1. Elasticsearch 过滤

    章节 Elasticsearch 基本概念 Elasticsearch 安装 Elasticsearch 使用集群 Elasticsearch 健康检查 Elasticsearch 列出索引 Elas ...

  2. SciKit-Learn 教程

    本教程力求做到简单易懂.深入浅出,帮助你快速掌握机器学习通用库 SciKit-Learn. 机器学习是计算机科学的一个分支,研究的是无需人类干预,能够自己学习的算法. 与TensorFlow不同,Sc ...

  3. 第八篇Django分页

    Django分页 1.复杂版 data = [] , ): tmp = {"id": i, "name": "alex-{}".format ...

  4. js原型链理解(4)-经典继承

    经典继承就是组合继承,就是组合构造函数和原型链的优点混合继承. 1.避免引用类型的属性初始化 2.避免相同方法的多次初始化 function Super(name){ this.ages = [100 ...

  5. oracle(5)--DQL查询语句

    DQL 数据查询语句(data query language) 1.查询条件符号: < ,  > ,  = ,    <= ,  >= ,    != ,  < > ...

  6. 一条命令解决:No toolchains found in the NDK toolchains folder for ABI with prefix: mips64el-linux-android

    1.找到目录D:\android\Sdk\ndk-bundle\toolchains.(根据自己的安装路径找到) 2.该路径下打开终端执行ln -sf aarch64-linux-android-4. ...

  7. ROS常见问题(一) 安装ROS时sudo rosdep init指令报错 最全解决方法

    安装ROS时sudo rosdep init指令报错: ERROR: cannot download default sources list from: https://raw.githubuser ...

  8. php添加openssl扩展

    很多时候都会用到openssl组件,下面就介绍一下linux下php安装openssl扩展: 安 装openssl组件,一般php安装目录中都有许多扩展组件的安装包,当然也包括openssl,例如我的 ...

  9. gentoo 修改键盘映射

    gentoo 上面修改键盘映射分为两种,一种是终端环境,一种是X环境. 终端环境 https://www.emacswiki.org/emacs/MovingTheCtrlKey https://wi ...

  10. i春秋-web-爆破3

    首先,是PHP代码审计,看懂就能解出来题. <?php error_reporting(0); session_start(); require('./flag.php'); if(!isset ...