先划分数据集程序训练集中猫狗各12500张现在提取1000张做为训练集,500张作为测试集,500张作为验证集:

# -*- coding: utf-8 -*-
import os, shutil original_dataset_dir = '/home/duchao/projects(my)/keras/kagge/train' # 原始文解压目录
base_dir = '/home/duchao/projects(my)/keras/kagge/small_data'
# 创建新的文件夹
os.mkdir(base_dir) # 分别对应划分好的训练(1000),验证(500)和测试目录(500)
train_dir = os.path.join(base_dir, 'train')
os.mkdir(train_dir)
validation_dir = os.path.join(base_dir, 'validation')
os.mkdir(validation_dir)
test_dir = os.path.join(base_dir, 'test')
os.mkdir(test_dir) # 猫的训练目录
train_cats_dir = os.path.join(train_dir, 'cats')
os.mkdir(train_cats_dir) # 狗的训练目录
train_dogs_dir = os.path.join(train_dir, 'dogs')
os.mkdir(train_dogs_dir) # 猫的验证目录
validation_cats_dir = os.path.join(validation_dir, 'cats')
os.mkdir(validation_cats_dir) # 狗的验证目录
validation_dogs_dir = os.path.join(validation_dir, 'dogs')
os.mkdir(validation_dogs_dir) # 猫的测试目录
test_cats_dir = os.path.join(test_dir, 'cats')
os.mkdir(test_cats_dir) # 狗的测试目录
test_dogs_dir = os.path.join(test_dir, 'dogs')
os.mkdir(test_dogs_dir) # 将前1000张猫的图像复制到train_cats_dir
fnames = ['cat.{}.jpg'.format(i) for i in range(1000)] # format函数通过{}来指点字符串处理的位置,储存为列表形式
for fname in fnames:
src = os.path.join(original_dataset_dir, fname)
dst = os.path.join(train_cats_dir, fname)
shutil.copyfile(src, dst) # copyfile实现将一个文件中的内容复制道另一个文件中去,src是来源文件;dst是目标文件 # 将剩下的500张图像复制到validation_cats_dir
fnames = ['cat.{}.jpg'.format(i) for i in range(1000, 1500)]
for fname in fnames:
src = os.path.join(original_dataset_dir, fname)
dst = os.path.join(validation_cats_dir, fname)
shutil.copyfile(src, dst) # 将接下来500张图片复制到test_cats_dir
fnames = ['cat.{}.jpg'.format(i) for i in range(1500, 2000)]
for fname in fnames:
src = os.path.join(original_dataset_dir, fname)
dst = os.path.join(test_cats_dir, fname)
shutil.copyfile(src, dst) # 将前1000张狗的图片复制到train_dogs_dir
fnames = ['dog.{}.jpg'.format(i) for i in range(1000)]
for fname in fnames:
src = os.path.join(original_dataset_dir, fname)
dst = os.path.join(train_dogs_dir, fname)
shutil.copyfile(src, dst) # 将接下来500张图像复制到validation_dogs_dir
fnames = ['dog.{}.jpg'.format(i) for i in range(1000, 1500)]
for fname in fnames:
src = os.path.join(original_dataset_dir, fname)
dst = os.path.join(validation_dogs_dir, fname)
shutil.copyfile(src, dst) # Copy next 500 dog images to test_dogs_dir
fnames = ['dog.{}.jpg'.format(i) for i in range(1500, 2000)]
for fname in fnames:
src = os.path.join(original_dataset_dir, fname)
dst = os.path.join(test_dogs_dir, fname)
shutil.copyfile(src, dst) print('total training cat images:', len(os.listdir(train_cats_dir))) #os.listdir列举指定目录中的文件名
print('total training dog images:', len(os.listdir(train_dogs_dir)))
print('total validation cat images:', len(os.listdir(validation_cats_dir)))
print('total validation dog images:', len(os.listdir(validation_dogs_dir)))
print('total test cat images:', len(os.listdir(test_cats_dir)))
print('total test dog images:', len(os.listdir(test_dogs_dir)))

keras猫狗大战的更多相关文章

  1. keras系列︱Application中五款已训练模型、VGG16框架(Sequential式、Model式)解读(二)

    引自:http://blog.csdn.net/sinat_26917383/article/details/72859145 中文文档:http://keras-cn.readthedocs.io/ ...

  2. 面向小数据集构建图像分类模型Keras

    文章信息 本文地址:http://blog.keras.io/building-powerful-image-classification-models-using-very-little-data. ...

  3. CNN基础一:从头开始训练CNN进行图像分类(猫狗大战为例)

    本文旨在总结一次从头开始训练CNN进行图像分类的完整过程(猫狗大战为例,使用Keras框架),免得经常遗忘.流程包括: 从Kaggle下载猫狗数据集: 利用python的os.shutil库,制作训练 ...

  4. 实战 迁移学习 VGG19、ResNet50、InceptionV3 实践 猫狗大战 问题

    实战 迁移学习 VGG19.ResNet50.InceptionV3 实践 猫狗大战 问题   参考博客:::https://blog.csdn.net/pengdali/article/detail ...

  5. 我的Keras使用总结(2)——构建图像分类模型(针对小数据集)

    Keras基本的使用都已经清楚了,那么这篇主要学习如何使用Keras进行训练模型,训练训练,主要就是“练”,所以多做几个案例就知道怎么做了. 在本文中,我们将提供一些面向小数据集(几百张到几千张图片) ...

  6. [Keras] Develop Neural Network With Keras Step-By-Step

    简单地训练一个四层全连接网络. Ref: http://machinelearningmastery.com/tutorial-first-neural-network-python-keras/ 1 ...

  7. keras 中如何自定义损失函数

    http://lazycoderx.com/2016/10/09/keras%E4%BF%9D%E5%AD%98%E6%A8%A1%E5%9E%8B%E6%97%B6%E4%BD%BF%E7%94%A ...

  8. keras安装

    找对工具真的很重要,周末和学霸折腾了一天才装了几个包,问了同事找了一个方便的包,装起来不要太快啊.二十分钟全部搞定. 一.Anaconda 真是大杀器,牛到飞起来,一键部署,所有常用的机器学习包全部包 ...

  9. ubuntu系统theano和keras的安装

    说明:系统是unbuntu14.04LTS,32位的操作系统,以前安装了python3.4,现在想要安装theano和keras.步骤如下: 1,安装pip sudo apt-get install ...

随机推荐

  1. Python MongoDB 插入文档

    章节 Python MySQL 入门 Python MySQL 创建数据库 Python MySQL 创建表 Python MySQL 插入表 Python MySQL Select Python M ...

  2. 基础语法-其它流程控制语句break和continue

    基础语法-其它流程控制语句break和continue 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 一.break语句 /** * break语句 * @author 尹正杰 * ...

  3. UVA - 12545 Bits Equalizer (比特变换器)(贪心)

    题意:输入两个等长(长度不超过100)的串S和T,其中S包含字符0,1,?,但T只包含0和1,你的任务是用尽量少的步数把S变成T.有以下3种操作: 1.把S中的0变成1. 2.把S中的“?”变成0或1 ...

  4. Mac Go 环境变量配置

    GOPATH 是工作目录,就是你打代码,代码的存放目录 GOROOT 是Go的安装目录,我下载的是免安装版的 现在的Go环境变量就是设置成这个样子, 终于Bee不会报错了!!!

  5. 全局唯一性ID生成方法小结

    全局ID通常要满足分片的一些要求:1 不能有单点故障.2 以时间为序,或者ID里包含时间.这样一是可以少一个索引,二是冷热数据容易分离.3 可以控制ShardingId.比如某一个用户的文章要放在同一 ...

  6. 201771010123汪慧和《面向对象程序设计Java》第十五周实验总结

    一.理论部分 1.JAR文件 (1)Java程序的打包:程序编译完成后,程序员将.class文件压缩打包为.jar文件后,GUI界面 程序就可以直接双击图标运行. (2).jar文件(Java归档)既 ...

  7. spring装配bean的三种方式及其混合装配

    在spring容器中装配bean有三种基本方式和混合装配方式: 隐式的bean自动发现机制和自动装配 在java中进行显式配置 在xml中配置 混合装配(在多个java文件中配置.在JavaConfi ...

  8. VUE v-if与v-show

    v-if 本质:vue-if是动态的向DOM树内添加或者删除DOM元素 优点:更加灵活 <li v-for="(item, index) in scene" v-if=&qu ...

  9. xlua 原理

    基于版本 104 可以直接在lua访问c#函数原理: CS 是一个table,设置了一个__index函数,如果访问不存在的成员的时候,会走__index函数,调用import_type从C#中找到具 ...

  10. 学生信息的添加 Java web简单项目初试(失败)

    题目要求: 1登录账号:要求由6到12位字母.数字.下划线组成,只有字母可以开头:(1分) 2登录密码:要求显示“• ”或“*”表示输入位数,密码要求八位以上字母.数字组成.(1分) 3性别:要求用单 ...