第十章:主成分模型与 VaR 分析

思维导图

一些想法

  • NS 家族模型的参数有经济意义,同时参数变化的行为类似主成分,考虑基于 NS 模型参数的风险度量。
  • 尝试用(多元)GARCH 滤波利率变化,对残差应用 PCA。

推导 PCD、PCC 和 KRD、KRC 的关系

利用主成分系数矩阵的正交性。

PCD 和 KRD

\[
\begin{aligned}
PCD(i) &= -\frac{1}{P} \frac{\partial P}{\partial c^*_i}\\&= -\sqrt{\lambda_i} \frac{1}{P} \frac{\partial P}{\partial c_i}\\
&=-\sqrt{\lambda_i} \frac{1}{P} \frac{\partial P}{\partial c_i} \sum_{j=1}^k \mu_{ij}^2\\
&=-\sqrt{\lambda_i} \frac{1}{P} \sum_{j=1}^k \frac{\partial P}{\partial c_i} \mu_{ij}^2\\
&=-\sqrt{\lambda_i} \frac{1}{P} \sum_{j=1}^k \frac{\partial P}{\partial c_i} \frac{\partial c_i}{\partial y(t_j)} \mu_{ij}\\
&=- \sqrt{\lambda_i} \frac{1}{P} \sum_{j=1}^k \frac{\partial P}{\partial y(t_j)} \mu_{ij}\\
&=\sqrt{\lambda_i}\sum_{j=1}^k KRD(j) \mu_{ij}\\
&=\sum_{j=1}^k KRD(j) l_{ji}
\end{aligned}
\]

PCC 和 KRC

\[
\begin{aligned}
PCC(i,j) &= -\frac{1}{P} \frac{\partial^2 P}{\partial c^*_i \partial c^*_j}\\
&=-\sqrt{\lambda_i}\sqrt{\lambda_j}\frac{1}{P} \frac{\partial^2 P}{\partial c_i \partial c_j}\\
\end{aligned}
\]

其中

\[
\begin{aligned}
\frac{\partial^2 P}{\partial c_i \partial c_j}&=
\frac{\partial\left(\frac{\partial P}{\partial c_i}\right)}{\partial c_j}\\
&=\frac{\partial\left(\sum_{l=1}^k \frac{\partial P}{\partial y(t_l)} \mu_{il}\right)}{\partial c_j}\\
&=\sum_{l=1}^k \frac{\partial^2 P}{\partial y(t_l) \partial c_j} \mu_{il}\\
\end{aligned}
\]

又有

\[
\begin{aligned}
\frac{\partial^2 P}{\partial y(t_l) \partial c_j}&=
\frac{\partial^2 P}{\partial y(t_l) \partial c_j} \sum_{n=1}^k \mu_{jn}^2\\
&=\sum_{n=1}^k \frac{\partial^2 P}{\partial y(t_l) \partial c_j} \mu_{jn}^2\\
&=\sum_{n=1}^k \frac{\partial^2 P}{\partial y(t_l) \partial c_j} \frac{\partial c_j}{\partial y(t_n)} \mu_{jn}\\
&=\sum_{n=1}^k \frac{\partial^2 P}{\partial y(t_l) \partial y(t_n)} \mu_{jn}\\
\end{aligned}
\]

所以

\[
\begin{aligned}
\frac{\partial^2 P}{\partial c_i \partial c_j}&=
\sum_{l=1}^k \sum_{n=1}^k \frac{\partial^2 P}{\partial y(t_l) \partial y(t_n)} \mu_{jn} \mu_{il}
\end{aligned}
\]

最终

\[
\begin{aligned}
PCC(i,j) &= -\sqrt{\lambda_i}\sqrt{\lambda_j}\frac{1}{P} \sum_{l=1}^k \sum_{n=1}^k \frac{\partial^2 P}{\partial y(t_l) \partial y(t_n)} \mu_{jn} \mu_{il}\\
&=\sum_{l=1}^k \sum_{n=1}^k KRC(l,n) l_{nj}l_{li}
\end{aligned}
\]

《Interest Rate Risk Modeling》阅读笔记——第十章 主成分模型与 VaR 分析的更多相关文章

  1. 《Interest Rate Risk Modeling》阅读笔记——第五章:久期向量模型

    目录 第五章:久期向量模型 思维导图 久期向量的推导 久期向量 广义久期向量 一些想法 第五章:久期向量模型 思维导图 久期向量的推导 \[ V_0 = \sum_{t=t_1}^{t_n} CF_t ...

  2. 《Interest Rate Risk Modeling》阅读笔记——第四章:M-absolute 和 M-square 风险度量

    目录 第四章:M-absolute 和 M-square 风险度量 思维导图 两个重要不等式的推导 关于 \(M^A\) 的不等式 关于 \(M^2\) 的不等式 凸性效应(CE)和风险效应(RE)的 ...

  3. 《Interest Rate Risk Modeling》阅读笔记——第三章:拟合期限结构

    目录 第三章:拟合期限结构 思维导图 扩展 第三章:拟合期限结构 思维导图 扩展 NS 模型的变种

  4. 《Interest Rate Risk Modeling》阅读笔记——第二章:债券价格、久期与凸性

    目录 第二章:债券价格.久期与凸性 思维导图 瞬时回报率-收益率的例子 第二章:债券价格.久期与凸性 思维导图 瞬时回报率-收益率的例子

  5. 《Interest Rate Risk Modeling》阅读笔记——第一章:利率风险建模概览

    目录 第一章:利率风险建模概览 思维导图 一些想法 第一章:利率风险建模概览 思维导图 一些想法 久期向量模型类似于研究组合收益的高阶矩. 久期向量模型用的是一般多项式表达高阶久期,试试正交多项式? ...

  6. 《Interest Rate Risk Modeling》阅读笔记——第八章:基于 LIBOR 模型用互换和利率期权进行对冲

    目录 第八章:基于 LIBOR 模型用互换和利率期权进行对冲 思维导图 推导浮息债在重置日(reset date)的价格 第八章:基于 LIBOR 模型用互换和利率期权进行对冲 思维导图 推导浮息债在 ...

  7. 《Interest Rate Risk Modeling》阅读笔记——第九章:关键利率久期和 VaR 分析

    目录 第九章:关键利率久期和 VaR 分析 思维导图 一些想法 有关现金流映射技术的推导 第九章:关键利率久期和 VaR 分析 思维导图 一些想法 在解关键方程的时候施加 \(L^1\) 约束也许可以 ...

  8. Keras 文档阅读笔记(不定期更新)

    目录 Keras 文档阅读笔记(不定期更新) 模型 Sequential 模型方法 Model 类(函数式 API) 方法 层 关于 Keras 网络层 核心层 卷积层 池化层 循环层 融合层 高级激 ...

  9. C++ Primer 第四版阅读笔记

    阅读笔记 初始化 变量定义指定了变量的类型和标识符,也可以为对象提供初始值.定义时指定了初始值的对象被称为是 已初始化的.C++ 支持两种初始化变量的形式:复制初始化和 直接初始化.复制初始化语法用等 ...

随机推荐

  1. php 随机生成汉字

    function getChar($num) // $num为生成汉字的数量 { $b = ''; for ($i=0; $i<$num; $i++) { // 使用chr()函数拼接双字节汉字 ...

  2. jdk动态代理和cglib动态代理底层实现原理超详细解析(jdk动态代理篇)

    代理模式是一种很常见的模式,本文主要分析jdk动态代理的过程 1.举例 public class ProxyFactory implements InvocationHandler { private ...

  3. 在这之后的两天又出现了w3wp进程找不到的情况了

    在这之后的两天又出现了w3wp进程找不到的情况了,我做了什么操作呢?无非就是vs中给一个过程附加删除了了一些dll,然后不停的重新生成解决方案,生成成功后,要调试,发现进程又没了. 实验了上面的方法, ...

  4. Linux centosVMware apache 限定某个目录禁止解析php、限制user_agent、php相关配置

    一.限定某个目录禁止解析php 核心配置文件内容 vim /usr/local/apache2.4/conf/extra/httpd-vhosts.conf 先创建.编辑一个php 配置 vim /u ...

  5. underscore.js -2009年发布的js库

    2009 Underscore.js 0.1.0发布 Underscore一个JavaScript实用库,提供了一整套函数式编程的实用功能,但是没有扩展任何JavaScript内置对象.它是这个问题的 ...

  6. django 模版内置的过滤器

    一.add 将传进来的参数添加到原来的值上面.这个过滤器会尝试将“值”和“参数”转换成整形然后进行相加.如果转换成整形过程中失败了,那么将会将“值”和“参数”进行拼接.如果是字符串,那么会拼接成字符串 ...

  7. C#二维数组的初始化和存取

    static void Main(string[] args) { ,]; ; j < ; j++) { strings[j, ] = $"{j}.0"; strings[j ...

  8. 《iOS开发进阶》书籍目录

    第一部分:iOS开发工具 第二部分:iOS开发实践 第10章 理解内存管理 10.1 引用计数 10.1.1 什么是引用计数,原理是什么 10.1.2 我们为什么需要引用计数 10.1.3 不要向已经 ...

  9. 1 Oracle概述&与MySQL的差别&SQL语句分类复习

    一. 知识点目录 Oracle的概念和安装 基本查询 条件查询 Oracle中的函数 多表查询 子查询 表空间的状态 用户 视图 索引 序列 同义词 PLSQL编程 游标 存储过程 存储函数 触发器 ...

  10. 新闻网大数据实时分析可视化系统项目——7、Kafka分布式集群部署

    Kafka是由LinkedIn开发的一个分布式的消息系统,使用Scala编写,它以可水平扩展和高吞吐率而被广泛使用.目前越来越多的开源分布式处理系统如Cloudera.Apache Storm.Spa ...