基于基因调控网络(Hopfield network)构建沃丁顿表观遗传景观
基因调控网络的概念在之前已经简要介绍过:https://www.cnblogs.com/pear-linzhu/p/12313951.html
沃丁顿表观遗传景观(The Waddington's epigenetic landscape) 是描述基因调控下细胞分化的动态性的一个经典的隐喻,是由沃丁顿在1957年提出的。他将细胞分化比喻作从高处沿山坡滚落下的小球,直到一个稳定的盆地 (basin),该盆地也就代表一定的分化状态。小球最开始能量较高,处于不稳定状态,对应干细胞等未分化的细胞状态,小球最终滚落于低能量的盆地,较稳定,对应分化后的细胞。小球(干细胞)沿着不同的路径最终可以进入不同的盆地(分化为不同的细胞)。图示如下:

接着介绍两篇数据驱动的建模 (建立landscape模型) 文章,两篇文章都是基于Artificial neural network中的Hopfield Network(HN)的,Artificial neural network也是构建基因调控网络的方法之一。第一篇基于离散的HN,第二篇基于连续的HN。
<Characterizing cancer subtypes as attractors of Hopfield networks [1]>
The GRN model of this paper is based on the artificial neural network, discretized Hopfield Network. In this paper, they use the static gene expression profiles to construct the discretized Hopfield Network to mapping cancer subtypes onto the attractors of the landscape.
Here’s a basic model of Hopfield Network:

Each node represents a gene, and its output as the gene expression value, that is, state. The state of a node will be updated by all of its neighbors’ states within an iteration. The formula as follows:

si(t) is the state of node i at time t, wij is the weight of the edge between node i and j.
The W will be learned by Hebbian learning.

P is the pattern matrix, p=sgn(D), D is the expression matrix.
After several iterations, we can get a stable state. And the stable state can be visualized by the expression matrix.

We can observe from the above figure that it gets into a stable state gradually, and the up and down parts corresponding to the subtype of cancer respectively, B-ALL and T-ALL. There is an error marked by a triangle in the upper stable state, but it won't influence the whole stable state.
Notably, they consider the sparse character of GRN, but the W learned by the Hebbian learning algorithm will be dense. They adopt a pruning method. At the premise of the accuracy of the classification of cells decrease within 20%, they delete the smaller weight edge.
Then, to visualize the landscape, they use the PCA to reduce dimension. As regular, they divide mesh on the 2D plane and do inverse PCA to map mesh points into the high dimensional space. Finally, based on the mesh points and true data points, we use the energy function E to plot them in the 3-dimensional space.

E is a Lyapunov function.
Finally, by interpolating values, we can get the landscape with the surface.
<HopLand: single-cell pseudotime recovery using continuous Hopfield network-based modeling of Waddington’s epigenetic landscape [2]>
The GRN model of this paper is based on the artificial neural network, Continuous Hopfield Network (CHN). In this paper, Hopland constructs landscape using continuous Hopfield Landscape (CHN) based on the gene expression data. And the pseudotime is estimated by the geodesic distance on the landscape. In this paper, they think the biological system cannot be characterized by the two-state discretized Hopfield Network, but a continuous relationship between input and output. As same as the last paper, each neuron represents a gene in the neural network.
As far as the model of CHN, vi represents the output of neuron, namely, gene expression value, N is the gene number, the input of neuron consists of noise and other neurons' output. The change rate of neuron i can be modeled as:

Ci is an amplifier, Wij is the weight matrix, gj() is the activated function, a sigmoid function as a gj() here, it's monotone increasing to assure the stableness of system. δi is the degeneration rate of gene i, Ii is the outer input.
To inferred these parameters, they construct two objective functions to generate simulated data at the premise that a realistic model can generate simulated data consistent with the true data.

DF as the density function and the OBJ1 to assure the distribution of true data and simulated data is consistent. And I can't understand OBJ2 well.
A gradient descent learning algorithm is been used to update the parameters in the CHN.
The energy function here is also a Lyapunov function:

The steps of visualization of the landscape are consistent with the paper [1]. The only different point is the dimensionality reduction method, it uses nonlinear GP-LVM to replace the linear PCA. They think the nonlinear method is more suitable for biological information extraction.
To estimate the pseudotime, they use the fast marching algorithm to extract the geodesic distance and then construct the MST. The pseudotime of the ith cell is estimated as the distance between the corresponding tree node with the root node.

Ref:
[1]. Maetschke S R, Ragan M A. Characterizing cancer subtypes as attractors of Hopfield networks[J]. Bioinformatics, 2014, 30(9): 1273-1279.
[2]. Guo J, Zheng J. HopLand: single-cell pseudotime recovery using continuous Hopfield network-based modeling of Waddington’s epigenetic landscape[J]. Bioinformatics, 2017, 33(14).
基于基因调控网络(Hopfield network)构建沃丁顿表观遗传景观的更多相关文章
- 基因调控网络 (Gene Regulatory Network) 01
本文为入门级的基因调控网络文章,主要介绍一些基本概念及常见的GRN模型. 概念:基因调控网络 (Gene Regulatory Network, GRN),简称调控网络,指细胞内或一个基因组内基因和基 ...
- 项目文章|DNA(羟)甲基化研究揭示铁离子依赖表观调控促进狼疮致病性T细胞分化|易基因
易基因(羟)甲基化DNA免疫共沉淀测序(h)MeDIP-seq研究成果见刊<Journal of Clinical Investigation> 2022年5月2日,中南大学湘雅二医院赵明 ...
- 综述 - 染色质可及性与调控表观基因组 | Chromatin accessibility and the regulatory epigenome
RNA-seq这个工具该什么时候用?ATAC-seq该什么时候用?有相当一部分项目设计不行,导致花大钱测了一些没有意义的数据. 还是在中心法则这个框架下来解释,这是生物信息的核心.打开华大科技服务官网 ...
- Hopfield Network 霍普菲尔德网络入门
简介 Hopfield Network (霍普菲尔德网络),是 Hopfield 在1982年提出的一种基于能量的模型,发表的文章是 Neural networks and physical syst ...
- 【RS】Collaborative Memory Network for Recommendation Systems - 基于协同记忆网络的推荐系统
[论文标题]Collaborative Memory Network for Recommendation Systems (SIGIR'18) [论文作者]—Travis Ebesu (San ...
- (数据科学学习手札47)基于Python的网络数据采集实战(2)
一.简介 马上大四了,最近在暑期实习,在数据挖掘的主业之外,也帮助同事做了很多网络数据采集的内容,接下来的数篇文章就将一一罗列出来,来续写几个月前开的这个网络数据采集实战的坑. 二.马蜂窝评论数据采集 ...
- Java - 网络编程(NetWork)
Java - 网络编程(NetWork) 一.java.net包下的 InetAddress 类的使用: > 一个 InetAddress 代表着一个IP地址 > 主要 ...
- 基于Spring Cloud和Netflix OSS构建微服务,Part 2
在上一篇文章中,我们已使用Spring Cloud和Netflix OSS中的核心组件,如Eureka.Ribbon和Zuul,部分实现了操作模型(operations model),允许单独部署的微 ...
- Kubernetes之网络策略(Network Policy)
系列目录 概述 Kubernetes要求集群中所有pod,无论是节点内还是跨节点,都可以直接通信,或者说所有pod工作在同一跨节点网络,此网络一般是二层虚拟网络,称为pod网络.在安装引导kubern ...
随机推荐
- 【LeetCode】合并两个有序数组
[问题] 给定两个有序整数数组 nums1 和 nums2,将 nums2 合并到 nums1 中,使得 num1 成为一个有序数组. 说明:初始化 nums1 和 nums2 的元素数量分别为 m ...
- Centos7安装rabbitMQ3.6.0
文章中的erlang和rabbitmq3.6.0 http://pan.baidu.com/s/1c2Nn64w Centos7 系统操作 cd /etc/yum.repos.d/ mv Cent ...
- POJ 1177/HDU 1828 picture 线段树+离散化+扫描线 轮廓周长计算
求n个图矩形放下来,有的重合有些重合一部分有些没重合,求最后总的不规则图型的轮廓长度. 我的做法是对x进行一遍扫描线,再对y做一遍同样的扫描线,相加即可.因为最后的轮廓必定是由不重合的线段长度组成的, ...
- tomcat conf目录下server.xml详解
一. 一个server.xml配置实例 1 <Server port="8005" shutdown="SHUTDOWN"> 2 <Lis ...
- JAVA的控制结构
一.控制结构 1.控制结构概述 控制结构是控制程序如何运行的特殊的语句结构.控制结构可以分为:顺序控制结构,分支控制结构和循环控制结构. 2.顺序控制结构 除了分支控制结构和循环控制结构之外的语句都是 ...
- 【分布式】流式计算Storm框架
Storm简介: Storm起源Twitter开源的一个类似于Hadoop的实时数据处理框架,不过两则还是有区别的,Hadoop是批量处理数据,而Storm处理的是实时的数据流. Storm应用场景: ...
- 自学Java第五章——《面向对象的基本特征》
面向对象的基本特征: 1.封装 2.继承 3.多态 6.1 封装 1.好处: (1)隐藏实现细节,方便使用者使用 (2)安全,可以控制可见范围 2.如何实现封装? 通过权限修饰符 面试题:请按照可见范 ...
- java集合对象区别一
Vector和ArrayList 1.vector是线程同步的,所以他也是线程安全的,而ArrayList是线程异步的,是不安全的.如果不考虑到线程的安全因素,一般用ArrayList效率较高. 2. ...
- 第二阶段scrum-3
1.整个团队的任务量: 2.任务看板: 会议照片: 产品状态: 前端制作完成,数据库正在配置
- 201803-2 碰撞的小球 Java
思路: 直接按照题意模拟,感觉没什么太好的办法.另外注意:int这种基础数据类型不能用equals这个方法 ,必须是Integer类型 import java.util.Scanner; public ...