cs231n spring 2017 lecture15 Efficient Methods and Hardware for Deep Learning
讲课嘉宾是Song Han,个人主页 Stanford:https://stanford.edu/~songhan/;MIT:https://mtlsites.mit.edu/songhan/。
1. 深度学习面临的问题:
1)模型越来越大,很难在移动端部署,也很难网络更新。
2)训练时间越来越长,限制了研究人员的产量。
3)耗能太多,硬件成本昂贵。
解决的方法:联合设计算法和硬件。
计算硬件可以分为通用和专用两大类。通用硬件又可以分为CPU和GPU。专用硬件可以分为(FPGA和ASIC,ASIC更高效,谷歌的TPU就是ASIC)。
2. Algorithms for Efficient Inference
1)Pruning,修剪掉不那么重要的神经元和连接。第一步,用原始的网络训练;第二步,修剪掉一部分网络;第三步,继续训练剩下的网络。不断重复第二步和第三步。在不损失精度的情况下,网络可以缩小到原来的十分之一(继续缩小精度会变差)。
2)Weight Sharing,权重并不需要那么精确,可以把一些近似的权重看成一样的(比如2.09、2.12、1.92、1.87可以全部看成2)。也是在原始训练基础上,用某种方式简化权重,然后不断训练调整简化权重的方式。在不损失精度的情况下,网络可以缩小到原来的八分之一。
前两种方法可以结合使用,网络可以缩小到原来的百分之几。有个名字Deep Compression。
3)Quantization,数据类型。TPU的设计主要就是优化这一部分。
4)Low Rank Approximation,把大网络拆成一系列小网络。
5)Binary(二元)/Ternary(三元) Net,很疯狂地把权重离散化成(-1,0,1)三种。
6)Winograd Transformation,一种更高效的求卷积的做法。
3. Hardware for Efficient Inference
这个方向各种硬件的共同目的是减少内存的读取(minimize memory access)。硬件需要能用压缩过的神经网络做预测。
EIE(Efficient Inference Engine)(Han et al. ISCA 2016):稀疏权重(扔掉为0的权重)、稀疏激活值(扔掉为0的激活值)、Weight Sharing(4-bit)。
4. Algorithms for Efficient Training
1)Parallelization。CPU按照摩尔定律发展,这些年单线程的性能已经提高的非常缓慢,而核的数量在不断提高。
2)Mixed Precision with FP16 and FP32,正常是用32位计算,但计算权重更新的时候用16位。
3)Model Distillation,用训练的很好的大网络的“软结果”(soft targets)作为标签提供给压缩过的小网络训练。这是Hinton的一篇论文提出的,里面解释了为什么软结果比ground truth更好。
4)DSD(Dense-Sparse-Dense Training),先对原始的稠密的网络做Pruning,训练稀疏的网络后,再Re-Dense出稠密的网络。Han说这是先学习树的枝干,再学习叶子。相比原来的稠密网络,Re-Dense出的精度更高。
5. Hardware for Efficient Training
Computation和Memory bandwidth是影响整体性能的两个因素。
Han对比Nvidia Pascal和Volta,猛吹了一波Volta。。。Volta有120个Tensor Core,非常擅长矩阵运算。
cs231n spring 2017 lecture15 Efficient Methods and Hardware for Deep Learning的更多相关文章
- cs231n spring 2017 lecture15 Efficient Methods and Hardware for Deep Learning 听课笔记
1. 深度学习面临的问题: 1)模型越来越大,很难在移动端部署,也很难网络更新. 2)训练时间越来越长,限制了研究人员的产量. 3)耗能太多,硬件成本昂贵. 解决的方法:联合设计算法和硬件. 计算硬件 ...
- 韩松毕业论文笔记-第六章-EFFICIENT METHODS AND HARDWARE FOR DEEP LEARNING
难得跟了一次热点,从看到论文到现在已经过了快三周了,又安排了其他方向,觉得再不写又像之前读过的N多篇一样被遗忘在角落,还是先写吧,虽然有些地方还没琢磨透,但是paper总是这样吧,毕竟没有亲手实现一下 ...
- cs231n spring 2017 lecture7 Training Neural Networks II 听课笔记
1. 优化: 1.1 随机梯度下降法(Stochasitc Gradient Decent, SGD)的问题: 1)对于condition number(Hessian矩阵最大和最小的奇异值的比值)很 ...
- cs231n spring 2017 lecture7 Training Neural Networks II
1. 优化: 1.1 随机梯度下降法(Stochasitc Gradient Decent, SGD)的问题: 1)对于condition number(Hessian矩阵最大和最小的奇异值的比值)很 ...
- cs231n spring 2017 lecture13 Generative Models 听课笔记
1. 非监督学习 监督学习有数据有标签,目的是学习数据和标签之间的映射关系.而无监督学习只有数据,没有标签,目的是学习数据额隐藏结构. 2. 生成模型(Generative Models) 已知训练数 ...
- cs231n spring 2017 lecture11 Detection and Segmentation 听课笔记
1. Semantic Segmentation 把每个像素分类到某个语义. 为了减少运算量,会先降采样再升采样.降采样一般用池化层,升采样有各种"Unpooling"." ...
- cs231n spring 2017 lecture9 CNN Architectures 听课笔记
参考<deeplearning.ai 卷积神经网络 Week 2 听课笔记>. 1. AlexNet(Krizhevsky et al. 2012),8层网络. 学会计算每一层的输出的sh ...
- cs231n spring 2017 Python/Numpy基础 (1)
本文使根据CS231n的讲义整理而成(http://cs231n.github.io/python-numpy-tutorial/),以下内容基于Python3. 1. 基本数据类型:可以用 prin ...
- cs231n spring 2017 lecture13 Generative Models
1. 非监督学习 监督学习有数据有标签,目的是学习数据和标签之间的映射关系.而无监督学习只有数据,没有标签,目的是学习数据额隐藏结构. 2. 生成模型(Generative Models) 已知训练数 ...
随机推荐
- 最长特殊序列 II
最长特殊序列 II class Solution { boolean containsSub(String s,String p){ int i,j; for(i=0,j=0;i<p.lengt ...
- try{}catch{}finally{}使用总结
import java.util.Scanner; class MyException extends Exception { public MyException(String Message) { ...
- c#连接sql server数据库字符串
第一种方式 Data Source=数据库地址;Initial Catalog=数据库名称;User Id=数据库登录名;Password=数据库密码;[Integrated Security=SSP ...
- C++代码质量度量工具大阅兵
姊妹篇:Java代码质量度量工具大阅兵: https://www.cnblogs.com/jiangxinnju/p/10010177.html cppcheck cppcheck: https:// ...
- vzray上网教程
1.首先按照之前的教程在chrome里安装插件-Proxy-SwitchyOmega-Chromium-2.5.15 2.打开 vzray-v3.11-windows-64,打开 3.在chrome ...
- java学习——内部类(一)
内部类 把一个类放在另一个类中定义,这个定义在其他内部的类被称为内部类,包含内部类 的类被成为外部类,Java从JDK1.1开始引入了内部类的定义. 内部类的作用: 内部类提供了更好的封装,可以把内部 ...
- springCloud 常用组件总结
本文浅谈只是对我自己初期认识这spring cloud的一个笔记. 微服务是一种架构风格和一种应对业务的架构策略.实现这种的技术方式很多.本文主要说spring cloud. spring cloud ...
- 对于centos的运用ssh远程连接
1,首先安装ssh服务器 $yum install openssh-server 2,记录你当前centos的ip地址 $ifconfig 3,再在windows里面安装putty 4安装完成后, 在 ...
- one_day_one_linuxCmd---scp命令
<坚持每天学习一个 linux 命令,今天我们来学习 scp 命令> scp 命令主要用在不同的 linux 系统之间 copy 文件,基于 ssh 登录,是一种安全的复制 scp 命令的 ...
- PAT Basic 1013 数素数 (20) [数学问题-素数]
题目 令Pi表示第i个素数.现任给两个正整数M <= N <= 10^4,请输出PM到PN的所有素数. 输⼊格式: 输⼊在⼀⾏中给出M和N,其间以空格分隔. 输出格式: 输出从PM到PN的 ...