B. An express train to reveries
time limit per test

1 second

memory limit per test

256 megabytes

input

standard input

output

standard output

Sengoku still remembers the mysterious "colourful meteoroids" she discovered with Lala-chan when they were little. In particular, one of the nights impressed her deeply, giving her the illusion that all her fancies would be realized.

On that night, Sengoku constructed a permutation p1, p2, ..., pn of integers from 1 to n inclusive, with each integer representing a colour, wishing for the colours to see in the coming meteor outburst. Two incredible outbursts then arrived, each with n meteorids, colours of which being integer sequences a1, a2, ..., an and b1, b2, ..., bn respectively. Meteoroids' colours were also between 1 and n inclusive, and the two sequences were not identical, that is, at least one i (1 ≤ i ≤ n) exists, such that ai ≠ bi holds.

Well, she almost had it all — each of the sequences a and b matched exactly n - 1 elements in Sengoku's permutation. In other words, there is exactly one i (1 ≤ i ≤ n) such that ai ≠ pi, and exactly one j (1 ≤ j ≤ n) such that bj ≠ pj.

For now, Sengoku is able to recover the actual colour sequences a and b through astronomical records, but her wishes have been long forgotten. You are to reconstruct any possible permutation Sengoku could have had on that night.

Input

The first line of input contains a positive integer n (2 ≤ n ≤ 1 000) — the length of Sengoku's permutation, being the length of both meteor outbursts at the same time.

The second line contains n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ n) — the sequence of colours in the first meteor outburst.

The third line contains n space-separated integers b1, b2, ..., bn (1 ≤ bi ≤ n) — the sequence of colours in the second meteor outburst. At least one i (1 ≤ i ≤ n) exists, such that ai ≠ bi holds.

Output

Output n space-separated integers p1, p2, ..., pn, denoting a possible permutation Sengoku could have had. If there are more than one possible answer, output any one of them.

Input guarantees that such permutation exists.

Examples
input
5
1 2 3 4 3
1 2 5 4 5
output
1 2 5 4 3
input
5
4 4 2 3 1
5 4 5 3 1
output
5 4 2 3 1
input
4
1 1 3 4
1 4 3 4
output
1 2 3 4
Note

In the first sample, both 1, 2, 5, 4, 3 and 1, 2, 3, 4, 5 are acceptable outputs.

In the second sample, 5, 4, 2, 3, 1 is the only permutation to satisfy the constraints.

/*----------------------------------------------
File: F:\ACM源代码\code forces\418\B.cpp
Date: 2017/6/8 17:17:55
Author: LyuCheng
----------------------------------------------*/
/*
题意:给你序列a,b,让你构造一个1到n的全排列序列p,使得恰好有一个i使得ai!=pi,恰好有一个j使得bj!==pj
给出的样例保证有解
思路:考虑下来,a,b不相等的位置最多有两处,并且a,b序列中出现过的数一定是1-n中的n-1个
当有一处不同的时候:
直接将a中两个重复数字的其中一个数字换成没有出现过的那个数字,然后输出 当有两处不同的时候:
这种情况有很多种,但是简单粗暴的办法就是,先求出,在a,b序列中分别没出现过的数,有两个,然后
a[i]==b[i]的地方,p[i]=a[i],不相等的地方,先假定p[a,b不相等位置1]=tmp1,p[a,b不相等位置2]=tmp2,
然后加一个判断是否满足,输出的条件:恰好有一个i使得ai!=pi,恰好有一个j使得bj!==pj,如果不满足,就挑换位置
*/
#include <bits/stdc++.h>
#define MAXN 1005
#define LL long long
using namespace std; int n;
int a[MAXN];
int visa[MAXN];
int b[MAXN];
int visb[MAXN];
int c[MAXN];
int main(int argc, char *argv[])
{
// freopen("in.txt","r",stdin);
scanf("%d",&n);
for(int i=;i<n;i++){
scanf("%d",&a[i]);
visa[a[i]]=true;
}
for(int i=;i<n;i++){
scanf("%d",&b[i]);
visb[b[i]]=true;
}
vector<int>v;
for(int i=;i<n;i++){
if(a[i]==b[i]){
c[i]=a[i];
}else{
c[i]=;
v.push_back(i);
}
}
if(v.size()==){//只有一个的时候
for(int i=;i<=n;i++){
if(visa[i]==false&&visb[i]==false){
c[v[]]=i;
break;
}
}
}else{//有两个位置不同的时候
int tmp1,tmp2;
for(int i=;i<=n;i++){
if(visa[i]==false) tmp1=i;
if(visb[i]==false) tmp2=i;
}
c[v[]]=tmp1;
c[v[]]=tmp2;
int cur=;
for(int i=;i<n;i++){
if(a[i]!=c[i]){
cur++;
}
}
for(int i=;i<n;i++){
if(b[i]!=c[i]){
cur++;
}
}
if(cur>){
swap(c[v[]],c[v[]]);
}
}
for(int i=;i<n;i++){
printf(i==?"%d":" %d",c[i]);
}
printf("\n");
return ;
}

B. An express train to reveries的更多相关文章

  1. An express train to reveries

    An express train to reveries time limit per test 1 second memory limit per test 256 megabytes input  ...

  2. Codeforces Round #418 (Div. 2) B. An express train to reveries

    time limit per test 1 second memory limit per test 256 megabytes input standard input output standar ...

  3. codeforces 814B.An express train to reveries 解题报告

    题目链接:http://codeforces.com/problemset/problem/814/B 题目意思:分别给定一个长度为 n 的不相同序列 a 和 b.这两个序列至少有 i 个位置(1 ≤ ...

  4. Codeforces - 814B - An express train to reveries - 构造

    http://codeforces.com/problemset/problem/814/B 构造题烦死人,一开始我还记录一大堆信息来构造p数列,其实因为s数列只有两项相等,也正好缺了一项,那就把两种 ...

  5. CF814B An express train to reveries

    思路: 模拟,枚举. 实现: #include <iostream> using namespace std; ; int a[N], b[N], cnt[N], n, x, y; int ...

  6. #418 Div2 Problem B An express train to reveries (构造 || 全排列序列特性)

    题目链接:http://codeforces.com/contest/814/problem/B 题意 : 有一个给出两个含有 n 个数的序列 a 和 b, 这两个序列和(1~n)的其中一个全排列序列 ...

  7. Codeforces Round #418 (Div. 2) A+B+C!

    终判才知道自己失了智.本场据说是chinese专场,可是请允许我吐槽一下题意! A. An abandoned sentiment from past shabi贪心手残for循环边界写错了竟然还过了 ...

  8. codeforces round 418 div2 补题 CF 814 A-E

    A An abandoned sentiment from past 水题 #include<bits/stdc++.h> using namespace std; int a[300], ...

  9. AtCoder Express(数学+二分)

    D - AtCoder Express Time limit : 2sec / Memory limit : 256MB Score : 400 points Problem Statement In ...

随机推荐

  1. Eclipse dynamic web project 插件

    下载了Eclipse Oxygen   发现没有Dynamic web  Project 首先我们先了解下Dynamic  Web Project  If you want to create a c ...

  2. OC——继承

    继承的其中一个很重要的目的是为了实现多态.我们现在先来看看OC的继承. 一.继承 父类: 头文件 // // Peason.h // 01-继承和多态 // // Created by zhangji ...

  3. POJ3069(贪心+巧用优先队列)

    题目传送门:http://poj.org/problem?id=3069 题目大意:一个直线上有N个点.点i的距离是Xi.从这些点中选取若干个加上标记.要求:对于每个点,与其距离为R的范围内必有做标记 ...

  4. JS -- Variables As Properties

    Variables As Properties When you declare a global JavaScript variable, what you are actually doing i ...

  5. ThinkPHP中:RBAC权限控制的实习步骤

    使用版本ThinkPHP3.1.3 第一步,建表及数据 第二步,建关联模型 第三步,控制器使用关联模型.配置文件 第四步,模板显示数据 第一步,建表及数据 在数据库中,建立一个companysvn数据 ...

  6. Windows 编程中恼人的各种字符以及字符指针类型

    在Windows编程中,很容易见到这些数据类型:LPSTR,LPTSTR,LPCTSTR... 像很多童鞋一样,当初在学Windows编程的时候,对着些数据类型真的是丈二和尚,摸不着头脑,长时间不用就 ...

  7. python之路第五篇之模块和加密算法(进阶篇:续)

    模块 Python中,如果要引用一些内置的函数,该怎么处理呢?在Python中有一个概念叫做模块(module) 简单地说,模块就是一个保存了Python代码的文件. 模块分类: 1)内置模块 2)自 ...

  8. 认识jQuery的Promise

    先前了解了ES6的Promise对象,来看看jQuery中的Promise,也就是jQuery的Deferred对象. 打开浏览器的控制台先. <script> var defer = $ ...

  9. docker命令不需要敲sudo的方法

    由于docker daemon需要绑定到主机的Unix socket而不是普通的TCP端口,而Unix socket的属主为root用户,所以其他用户只有在命令前添加sudo选项才能执行相关操作. 如 ...

  10. 写一个ORM框架的第一步

    新一次的内部提升开始了,如果您想写一个框架从Apache Commons DbUtils开始学习是一种不错的选择,我们先学习应用这个小“框架”再把源代码理解,然后写一个属于自己的ORM框架不是梦. 一 ...