走近RDD
RDD(Resilient Distributed Datasets)弹性分布式数据集。RDD可以看成是一个简单的"数组",对其进行操作也只需要调用有限的"数组"中的方法即可,但它与一般数组的区别在于:RDD是分布式存储,可以跟好的利用现有的云数据平台,并在内存中进行。此处的弹性指的是数据的存储方式,及数据在节点中进行存储的时候,既可以使用内存也可以使用磁盘。此外,RDD还具有很强的容错性,在spark运行计算的过程中,不会因为某个节点错误而使得整个任务失败;不通节点中并发运行的数据,如果在某个节点发生错误时,RDD会自动将其在不同的节点中重试。
RDD一大特性是延迟计算,即一个完整的RDD运行任务被分成2部分:Transformation和Action。
Transformation用于对RDD的创建。在spark中,RDD只能使用Transformation来创建,同时Transformation还提供了大量的操作方法。RDD还可以利用Transformation来生成新的RDD,这样可以在有限的内存空间中生成竟可能多的数据对象。无论发生了多少次Transformation,此时,在RDD中真正数据计算运行的操作Action都没真正的开始运行。
Action是数据的执行部分,其也提供了大量的方法去执行数据的计算操作部分。
RDD可以将其看成一个分布在不同节点中的分布式数据集,并将数据以数据块(Block)的形式存储在各个节点的计算机中。每个BlockMaster管理着若干个BlockSlave,而每个BlockSlave又管理着若干个BlockNode。当BlockSlave获得了每个Node节点的地址,又会反向向BlockMaster注册每个Node的基本信息,这样就形成了分层管理。
RDD依赖
import org.apache.spark.{SparkConf, SparkContext} object test {
def main(args: Array[String]): Unit = {
val conf=new SparkConf().setMaster("local").setAppName("test")
val sc=new SparkContext(conf)
val arr=sc.parallelize(Array(,,,,,,,))//parallelize将内存数据读入Spark系统中,作为整体数据集
val result=arr.aggregate()(math.max(_,_),_+_)//_+_ 对传递的第一个方法的结果集进行进一步处理
println(result)
}
}
结果为8
import org.apache.spark.{SparkConf, SparkContext} object test {
def main(args: Array[String]): Unit = {
val conf=new SparkConf().setMaster("local").setAppName("test")
val sc=new SparkContext(conf)
val arr=sc.parallelize(Array("abd","hello world","hello sb"))//parallelize将内存数据读入Spark系统中,作为整体数据集
val result=arr.aggregate("")((value,word)=>value+word,_+_)//_+_ 对传递的第一个方法的结果集进行进一步处理
println(result)
}
}
结果为abdhello worldhello sb
3、cache是将数据内容计算并保存在计算节点的内存中
4、cartesion是用于对不同的数组进行笛卡尔操作,要求是数组的长度必须相同
import org.apache.spark.{SparkConf, SparkContext} object test {
def main(args: Array[String]): Unit = {
val conf=new SparkConf().setMaster("local").setAppName("test")
val sc=new SparkContext(conf)
val arr1=sc.parallelize(Array(,,,))//parallelize将内存数据读入Spark系统中,作为整体数据集
val arr2=sc.parallelize(Array(,,,))
val res=arr1.cartesian(arr2)
res.foreach(print)
}
}
结果:(1,4)(1,3)(1,2)(1,1)(2,4)(2,3)(2,2)(2,1)(3,4)(3,3)(3,2)(3,1)(4,4)(4,3)(4,2)(4,1)
5、Coalesce是将已经存储的数据重新分片后再进行存储(repartition与Coalesce类似)
import org.apache.spark.{SparkConf, SparkContext} object test {
def main(args: Array[String]): Unit = {
val conf=new SparkConf().setMaster("local").setAppName("test")
val sc=new SparkContext(conf)
val arr1=sc.parallelize(Array(,,,,,))//parallelize将内存数据读入Spark系统中,作为整体数据集
val arr2=arr1.coalesce(,true)
val res1=arr1.aggregate()(math.max(_,_),_+_)
println(res1)
val res2=arr2.aggregate()(math.max(_,_),_+_)
println(res2)
}
}
结果为6 11
6、countByValue是计算数据集中某个数据出现的个数,并将其以map的形式返回
7、countByKey是计算数据集中元数据键值对key出现的个数
import org.apache.spark.{SparkConf, SparkContext} object test {
def main(args: Array[String]): Unit = {
val conf=new SparkConf().setMaster("local").setAppName("test")
val sc=new SparkContext(conf)
val arr1=sc.parallelize(Array((,"a"),(,'b'),(,'c'),(,'d'),(,'a')))//parallelize将内存数据读入Spark系统中,作为整体数据集
val res1=arr1.countByValue()
res1.foreach(println)
val res2=arr1.countByKey()
res2.foreach(println)
}
}
//结果:((1,c),1)
((,a),)
((,a),)
((,d),)
((,b),)
(,)
(,)
8、filter是对数据集进行过滤
9、flatMap是对RDD中的数据进行整体操作的一个特殊方法,其在定义时就是针对数据集进行操作
10、map可以对RDD中的数据集进行逐个操作,其与flatmap不同得是,flatmap是将数据集中的数据作为一个整体去处理,之后再对其中的数据做计算,而map则直接对数据集中的数据做单独的处理
11、groupBy是将传入的数据进行分组
12、keyBy是为数据集中的每个个体数据添加一个key,从而形成键值对
13、reduce同时对2个数据进行处理,主要是对传入的数据进行合并处理
14、sortBy是对已有的RDD进行重新排序
import org.apache.spark.{SparkConf, SparkContext} object test {
def main(args: Array[String]): Unit = {
val conf=new SparkConf().setMaster("local").setAppName("test")
val sc=new SparkContext(conf)
val arr1=sc.parallelize(Array((,"a"),(,"c"),(,"b"),(,"x"),(,"f")))//parallelize将内存数据读入Spark系统中,作为整体数据集
val res1=arr1.sortBy(word=>word._1,true)
val res2=arr1.sortBy(word=>word._2,true)
res1.foreach(println)
res2.foreach(println)
}
}
15、zip可以将若干个RDD压缩成一个新的RDD
走近RDD的更多相关文章
- Spark RDD 核心总结
摘要: 1.RDD的五大属性 1.1 partitions(分区) 1.2 partitioner(分区方法) 1.3 dependencies(依赖关系) 1.4 compute(获取分区迭代列表) ...
- Spark笔记:复杂RDD的API的理解(下)
本篇接着谈谈那些稍微复杂的API. 1) flatMapValues:针对Pair RDD中的每个值应用一个返回迭代器的函数,然后对返回的每个元素都生成一个对应原键的键值对记录 这个方法我最开始接 ...
- Spark笔记:复杂RDD的API的理解(上)
本篇接着讲解RDD的API,讲解那些不是很容易理解的API,同时本篇文章还将展示如何将外部的函数引入到RDD的API里使用,最后通过对RDD的API深入学习,我们还讲讲一些和RDD开发相关的scala ...
- Spark笔记:RDD基本操作(下)
上一篇里我提到可以把RDD当作一个数组,这样我们在学习spark的API时候很多问题就能很好理解了.上篇文章里的API也都是基于RDD是数组的数据模型而进行操作的. Spark是一个计算框架,是对ma ...
- Spark笔记:RDD基本操作(上)
本文主要是讲解spark里RDD的基础操作.RDD是spark特有的数据模型,谈到RDD就会提到什么弹性分布式数据集,什么有向无环图,本文暂时不去展开这些高深概念,在阅读本文时候,大家可以就把RDD当 ...
- Spark核心——RDD
Spark中最核心的概念为RDD(Resilient Distributed DataSets)中文为:弹性分布式数据集,RDD为对分布式内存对象的 抽象它表示一个被分区不可变且能并行操作的数据集:R ...
- 【原】Learning Spark (Python版) 学习笔记(一)----RDD 基本概念与命令
<Learning Spark>这本书算是Spark入门的必读书了,中文版是<Spark快速大数据分析>,不过豆瓣书评很有意思的是,英文原版评分7.4,评论都说入门而已深入不足 ...
- Spark Rdd coalesce()方法和repartition()方法
在Spark的Rdd中,Rdd是分区的. 有时候需要重新设置Rdd的分区数量,比如Rdd的分区中,Rdd分区比较多,但是每个Rdd的数据量比较小,需要设置一个比较合理的分区.或者需要把Rdd的分区数量 ...
- RDD/Dataset/DataFrame互转
1.RDD -> Dataset val ds = rdd.toDS() 2.RDD -> DataFrame val df = spark.read.json(rdd) 3.Datase ...
随机推荐
- 解决kindeditor编辑器中使用百度地图时不能拖动坐标的问题
覆盖\plugins\baidumap文件夹下的map.html代码即可 <!doctype html><html><head> <meta http- ...
- ctf中常见注入题源码及脚本分析
1.代码审计发现 这里没有用escape_string,因此存在注入. function show($username){ global $conn; $sql = "select role ...
- HTML5——JSON的方法实现对象copy
JSON(JavaScript Object Notation, JS 对象标记) 是一种轻量级的数据交换格式.它基于 ECMAScript (w3c制定的js规范)的一个子集,采用完全独立于编程语言 ...
- 使用Jexus 5.8.2在Centos下部署运行Asp.net core
这里安装的Jexus不是独立版本,所以需要先安装Mono 系统版本:Cenos7,Mono版本:5.0.1 Stable (5.0.1.1) Mono官方doc:http://www.mono-p ...
- Linux操作系统-命令-netstat
# 之前已经写过了3篇与"性能测试"有关系的Linux命令,它们分别是free.top.vmstat # 接下来还需要把另外2个命令也写下来:netstat和iostat 最近认真地读了1篇关于"定位 ...
- 开心的金明 NOIP 2006 普及组
题目描述 金明今天很开心,家里购置的新房就要领钥匙了,新房里有一间他自己专用的很宽敞的房间.更让他高兴的是,妈妈昨天对他说:"你的房间需要购买哪些物品,怎么布置,你说了算,只要不超过N元钱就 ...
- js调试的时候用console.log("变量"+scrollTop+windowHeight)
console.log("变量"+scrollTop+windowHeight) alert会打断程序,但是console.log("变量"+scrollTop ...
- C++引用的作用
引入 C语言中函数有两种传参的方式: 传值和传址.以传值方式, 在函数调用过程中会生成一份临时变量用形参代替, 最终把实参的值传递给新分配的临时变量即形参. 它的优点是避免了函数调用的副作用, 确无法 ...
- ASP.NET Core 运行原理解剖[1]:Hosting
ASP.NET Core 是新一代的 ASP.NET,第一次出现时代号为 ASP.NET vNext,后来命名为ASP.NET 5,随着它的完善与成熟,最终命名为 ASP.NET Core,表明它不是 ...
- mysql 时间格式化
将时间转为格式化的字符串 select date_format(now(),'%Y%m%d'); 将时间字符串转为时间戳 select unix_timestamp('2017-07-14') 将时间 ...