O(n) 排序算法

前言

前面有总结过各类常用的排序算法,但是那些排序算法平均的时间复杂度是O(nlogn),所以我要介绍三种时间复杂度为O(n)的线性时间复杂度的排序算法。

计数排序

计数排序利用了哈希的性质,将一个中间数组来记录数值对应的下标,最后查询对应的下标进行放置;

步骤如下:

  1. 找出待排序的数组中最小和最大值,计算最大和最小值之间的差值;
  2. 计算每个数值出现的次数,接着进行累加计算出数值的位置;
  3. 反向填充数组,根据查询下标找到位置后填充数值;

实现

#include <iostream>
#include <vector>
using namespace std; vector<int> counting_sort(vector<int> nums) {
int max = nums[0], min = nums[0];
size_t len = nums.size();
for (size_t i = 1; i < len; i++) {
if (max < nums[i]) {
max = nums[i];
}
if (min > nums[i]) {
min = nums[i];
}
}
int k = max - min + 1;
vector<int> temp(k, 0);
// 第一步:计算每个数字出现的次数
for (size_t i = 0; i < len; i++) {
temp[nums[i] - min] += 1;
}
// 第二步:累加
for (size_t i = 1; i < len; i++) {
temp[i] += temp[i-1];
}
vector<int> result(len, 0);
// 第三步:将数字放在相应的位置
for (size_t i = 0; i < len; i++) {
result[--temp[nums[i] - min]] = nums[i];
}
return result;
} int main() {
vector<int> res = counting_sort({10, 9, 8, 7, 6, 5, 4, 3, 2, 1});
for (auto re : res) {
cout << re << " ";
}
return 0;
}

缺点和优点

利用了哈希的原理,其时间复杂度为n,但是这是用空间复杂度来换的,即便上面有进行过优化,但是面对一个较大值和较小值的数组,其仍然会对空间造成很大的浪费。

基数排序

将所有数值在每一位上面进行排序,排序方法利用计数排序的原理;

步骤:

  1. 计算数值中最大值的位数,用作后面比较的次数;
  2. 计算所有数值在每一位上面的排序,参考计数排序;

实现

void redis_sort(vector<int>& nums) {
int bits = max_bit(nums);
int len = nums.size();
vector<int> temp(len, 0), count(10, 0);
for (int i = 1, redix = 1; i <= bits; i++, redix *= 10) {
// 注意,每次分配前需要清空计数器
count.assign(10, 0);
// 第一步:计算每个数值下标出现的次数
for (int j = 0; j < len; j++) {
count[(nums[j]/redix)%10]++;
}
// 第二步:累加计算下标
for (int j = 1; j < 10; j++) {
count[j] += count[j-1];
}
// 第三步:根据bit的下标找到位置来填充
for (int j = len-1; j >= 0; j--) {
int k = (nums[j]/redix)%10;
temp[count[k]-1] = nums[j];
count[k]--;
}
// 第四部:排好序的数组赋值
for (int j = 0; j < len; j++) {
nums[j] = temp[j];
}
}
}

缺点和优点

因为其下标在0-10之间,所以有效的控制了空间复杂度,但是其复杂度较计数排序增加了,明显其时间复杂度为O(k * n),k代表数字位数,这取决于数字位的选择,比如比特位数,其决定了要进行多少轮的处理;虽然增加了时间复杂度,但依旧比那些需要进行比较的排序算法较快一些。

桶排序

桶排序的原理在于将数组分配到一定数量的桶中,每个桶在个别排序,最后合并排序。

实现

const int BUCKET_NUM = 10;

// 链表的插入排序
LinkNode* insert(LinkNode* head, int val) {
LinkNode *newhead = new LinkNode(0);
newhead->_next = head; LinkNode *node = new LinkNode(val);
LinkNode *temp = newhead;
while (temp->_next != NULL && temp->_next->_data <= val) {
temp = temp->_next;
}
node->_next = temp->_next;
temp->_next = node;
return newhead->_next;
} // 两个排序链表的合并
LinkNode* merge(LinkNode* head, LinkNode* bucket_node) {
LinkNode* newhead = new LinkNode(0);
LinkNode* temp = newhead;
while (head && bucket_node) {
if (head->_data > bucket_node->_data) {
temp->_next = bucket_node;
bucket_node = bucket_node->_next;
}
else {
temp->_next = head;
head = head->_next;
}
temp = temp->_next;
}
if (head != NULL) {
temp->_next = head;
}
else if (bucket_node != NULL) {
temp->_next = bucket_node;
}
return newhead->_next;
} vector<int> BucketSort(vector<int> nums) {
int len = nums.size();
vector<LinkNode*> buckets(BUCKET_NUM, (LinkNode*)(0));
// 第一步:对数值进行插入排序
for (int i = 0; i < len; i++) {
int idx = nums[i] % BUCKET_NUM;
LinkNode* head = buckets[idx];
buckets[idx] = insert(head, nums[i]);
}
// 第二步:将桶中的值进行合并
LinkNode *head = NULL;
for (int i = 0; i < BUCKET_NUM; i++) {
head = merge(head, buckets[i]);
}
// 第三步:将排序好的链表赋值
vector<int> result(len, 0);
for (int i = 0; i < len, head != NULL; i++, head = head->_next) {
result[i] = head->_data;
}
return result;
}

缺点和优点

如果数组中的每个数值都会均匀的落入每个桶中,则其最优的时间复杂度在n,但是如果数值都集中的加入到固定的几个桶中,甚至是都落入一个桶中,那么这样在对数值进行插入排序的时候就变成了双层循环,则其最差时间复杂度为n^2。

比较

o(n)线性排序算法的更多相关文章

  1. python实现线性排序算法-计数排序

    计数排序假定输入元素的每一个都是介于0到k之间的整数,此处K为某个整数,当k=O(n)时,计数排序的运行时间为O(n) 它的基本思想是:根据每个输入元素x确定小于x的元素个数,根据这个信息把x直接放到 ...

  2. 排序算法的C语言实现(下 线性时间排序:计数排序与基数排序)

    计数排序 计数排序是一种高效的线性排序. 它通过计算一个集合中元素出现的次数来确定集合如何排序.不同于插入排序.快速排序等基于元素比较的排序,计数排序是不需要进行元素比较的,而且它的运行效率要比效率为 ...

  3. Python实现各种排序算法的代码示例总结

    Python实现各种排序算法的代码示例总结 作者:Donald Knuth 字体:[增加 减小] 类型:转载 时间:2015-12-11我要评论 这篇文章主要介绍了Python实现各种排序算法的代码示 ...

  4. 用python实现各种排序算法

    最简单的排序有三种:插入排序,选择排序和冒泡排序.它们的平均时间复杂度均为O(n^2),在这里对原理就不加赘述了. 贴出源代码: 插入排序: def insertion_sort(sort_list) ...

  5. 十大排序算法总结(Python3实现)

    十大排序算法总结(Python3实现) 本文链接:https://blog.csdn.net/aiya_aiya_/article/details/79846380 目录 一.概述 二.算法简介及代码 ...

  6. 线性时间的排序算法--桶排序(以leetcode164. Maximum Gap为例讲解)

    前言 在比较排序的算法中,快速排序的性能最佳,时间复杂度是O(N*logN).因此,在使用比较排序时,时间复杂度的下限就是O(N*logN).而桶排序的时间复杂度是O(N+C),因为它的实现并不是基于 ...

  7. 模板化的七种排序算法,适用于T* vector<T>以及list<T>

    最近在写一些数据结构以及算法相关的代码,比如常用排序算法以及具有启发能力的智能算法.为了能够让写下的代码下次还能够被复用,直接将代码编写成类模板成员函数的方式,之所以没有将这种方式改成更方便的函数模板 ...

  8. 八大排序算法Java

    目录(?)[-] 概述 插入排序直接插入排序Straight Insertion Sort 插入排序希尔排序Shells Sort 选择排序简单选择排序Simple Selection Sort 选择 ...

  9. Java各种排序算法详解

    排序大的分类可以分为两种:内排序和外排序.在排序过程中,全部记录存放在内存,则称为内排序,如果排序过程中需要使用外存,则称为外排序.下面讲的排序都是属于内排序. 内排序有可以分为以下几类: (1).插 ...

随机推荐

  1. 函数调用过程&生成器解释

    摘自马哥解答,感谢. 函数调用过程: 假设程序是单进程,单执行流,在某一时刻,能运行的程序流只能有一个.但函数调用会打开新的执行上下文,因此,为了确保main函数可以恢复现场,在main函数调用其它函 ...

  2. Tcl与Design Compiler (十)——其他的时序约束选项(一)

    本文属于原创手打(有参考文献),如果有错,欢迎留言更正:此外,转载请标明出处 http://www.cnblogs.com/IClearner/  ,作者:IC_learner 之前讲了基本的时序路径 ...

  3. navicat与phpmyadmin做mysql的自定义函数和事件

    自定义函数和事件是mysql一个很方便的功能,navicat在5.1以上版本就支持了自定义函数和事件,phpmyadmim不清楚. 用这个是由于一些简单的事情,没有必要去做一个服务器计划使用 接下来我 ...

  4. windows下nginx的安装及使用方法入门

    nginx功能之一可以启动一个本地服务器,通过配置server_name和root目录等来访问目标文件 一. 下载 http://nginx.org/   下载后解压   二. 修改配置文件 ngin ...

  5. 【iOS系列】-多图片多线程异步下载

    多图片多线程异步下载 开发中非常常用的就是就是图片下载,我们常用的就是SDWebImage,但是作为开发人员,不仅要能会用,还要知道其原理.本文就会介绍多图下载的实现. 本文中的示例Demno地址,下 ...

  6. js距离现在时间计算

    <script language="javascript"> var biryear = 2015; var birmonth = 12; var birday = 1 ...

  7. webpack搭建服务器,随时修改刷新

    前提:1.对webpack有一定了解,本文不做介绍 2.安装node.js 手把手操作: 1.创建一个名为webpack-server的文件夹(随便取的) 2.cd到当前文件夹:cd webpack- ...

  8. java中创建对象中使用默认构造函数的注意点

    public class Test3 {   private int n;   Test3() {      System.out.println("调用默认构造器");   }  ...

  9. jquery使用CSS3实现文字动画效果插件Textillate.js

    Textillate是一款基于jquery的使用CSS3实现文字动画的小巧插件.Textillate.js集成了一些很棒的使用CSS3动画效果的 JavaScript 库,您可非常轻轻松地把这些动画效 ...

  10. html字体问题

    正如咱们在上一章中解说的那样,HTML元素使页面规划者能够对文档的构造进行符号.HTML标准列出了浏览器应该怎么显现这些元素的攻略.例如,您能够合理地保证强元素的内容将显现粗体.此外,您能够非常信赖大 ...