BZOJ 2440: [中山市选2011]完全平方数 [容斥原理 莫比乌斯函数]
2440: [中山市选2011]完全平方数
Time Limit: 10 Sec Memory Limit: 128 MB
Submit: 3028 Solved: 1460
[Submit][Status][Discuss]
Description
小 X 自幼就很喜欢数。但奇怪的是,他十分讨厌完全平方数。他觉得这些
数看起来很令人难受。由此,他也讨厌所有是完全平方数的正整数倍的数。然而
这丝毫不影响他对其他数的热爱。
这天是小X的生日,小 W 想送一个数给他作为生日礼物。当然他不能送一
个小X讨厌的数。他列出了所有小X不讨厌的数,然后选取了第 K个数送给了
小X。小X很开心地收下了。
然而现在小 W 却记不起送给小X的是哪个数了。你能帮他一下吗?
Input
包含多组测试数据。文件第一行有一个整数 T,表示测试
数据的组数。
第2 至第T+1 行每行有一个整数Ki,描述一组数据,含义如题目中所描述。
Output
含T 行,分别对每组数据作出回答。第 i 行输出相应的
第Ki 个不是完全平方数的正整数倍的数。
Sample Input
1
13
100
1234567
Sample Output
19
163
2030745
HINT
对于 100%的数据有 1 ≤ Ki ≤ 10^9, T ≤ 50
求第k个无平方因子数
二分这个数mid
小于sqrt(mid)的质数都可能成为平方因子,而一个数位平方因子数必定含有一个质数的组合(不一定是几个质数)的平方
根据容斥原理,[1,mid]中无平方因子数的个数为
- 0个质数乘积的平方的倍数的数的数量(1的倍数)
- -每个质数的平方的倍数的数的数量(9的倍数,25的倍数,...)
- +每2个质数乘积的平方的倍数的数的数量(36的倍数,100的倍数,...)-...
也就是容斥原理的变种“奇负偶正”
对于质因子的组合p,它的倍数的个数为mid/(p*p)
只有质因子的次数都是1才会用到,正好是莫比乌斯函数.....
#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cstring>
#include <cmath>
using namespace std;
typedef long long ll;
const int N=;
inline int read(){
char c=getchar();ll x=,f=;
while(c<''||c>''){if(c=='-')f=-;c=getchar();}
while(c>=''&&c<=''){x=x*+c-'';c=getchar();}
return x*f;
}
int n;
bool notp[N];
int p[N],mu[N];
void sieve(){
mu[]=;
for(int i=;i<=N-;i++){
if(!notp[i]) p[++p[]]=i,mu[i]=-;
for(int j=;j<=p[]&&i*p[j]<=N-;j++){
int t=i*p[j];
notp[t]=;
if(i%p[j]==){
mu[t]=;
break;
}
mu[t]=-mu[i];
}
}
}
int cal(int x){
int ans=,m=sqrt(x);
for(int i=;i<=m;i++) ans+=x/(i*i)*mu[i];
return ans;
}
int sol(){
int l=n,r=n<<,ans=-;
while(l<=r){
ll mid=l+((r-l)>>),sum=cal(mid);//printf("hi %d %d\n",mid,sum);
if(sum<n) l=mid+;
else ans=mid,r=mid-;
}
return ans;
}
int main(){
sieve();
int T=read();
while(T--){
n=read();
printf("%d\n",sol());
}
}
BZOJ 2440: [中山市选2011]完全平方数 [容斥原理 莫比乌斯函数]的更多相关文章
- BZOJ 2440 [中山市选2011]完全平方数 (二分 + 莫比乌斯函数)
2440: [中山市选2011]完全平方数 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 4805 Solved: 2325[Submit][Sta ...
- bzoj 2440: [中山市选2011]完全平方数【莫比乌斯函数+二分】
二分答案,然后用莫比乌斯函数作为容斥系数,计算当前枚举的mid内有几个满足要求的数 #include<iostream> #include<cstdio> #include&l ...
- BZOJ 2440 [中山市选2011]完全平方数 | 莫比乌斯函数
BZOJ 2440 [中山市选2011]完全平方数 | 莫比乌斯函数 题面 找出第k个不是平方数的倍数的数(1不是平方数, \(k \le 10^9\)). 题解 首先二分答案,问题就转化成了求\([ ...
- BZOJ 2440: [中山市选2011]完全平方数( 二分答案 + 容斥原理 + 莫比乌斯函数 )
先二分答案m,<=m的有m-∑(m/pi*pi)+∑(m/pi*pi*pj*pj)-……个符合题意的(容斥原理), 容斥系数就是莫比乌斯函数μ(预处理)... ----------------- ...
- Bzoj 2440: [中山市选2011]完全平方数(莫比乌斯函数+容斥原理+二分答案)
2440: [中山市选2011]完全平方数 Time Limit: 10 Sec Memory Limit: 128 MB Description 小 X 自幼就很喜欢数.但奇怪的是,他十分讨厌完全平 ...
- 【BZOJ】2440: [中山市选2011]完全平方数(莫比乌斯+容斥原理+二分)
http://www.lydsy.com/JudgeOnline/problem.php?id=2440 我觉得网上很多题解都没说清楚...(还是我太弱了? 首先我们可以将问题转换为判定性问题,即给出 ...
- [BZOJ 2440] [中山市选2011] 完全平方数 【二分 + 莫比乌斯函数】
题目链接:BZOJ - 2440 题目分析 首先,通过打表之类的方法可以知道,答案不会超过 2 * k . 那么我们使用二分,对于一个二分的值 x ,求出 [1, x] 之间的可以送出的数有多少个. ...
- BZOJ.2440.[中山市选2011]完全平方数(莫比乌斯函数 二分)
题目链接 总感觉博客园的\(Markdown\)很..\(gouzhi\),可以看这的. 题意即求第\(k\)个无平方因子数. 无平方因子数(Square-Free Number),即分解之后所有质因 ...
- bzoj 2440: [中山市选2011]完全平方数
#include<cstdio> #include<iostream> #include<cstring> #include<cmath> #defin ...
随机推荐
- 【转】string.Format对C#字符串格式化
转自:http://blog.csdn.net/samsone/article/details/7556781 1.格式化货币(跟系统的环境有关,中文系统默认格式化人民币,英文系统格式化美元) str ...
- Android自定义View之圆环交替 等待效果
学习了前面两篇的知识,对于本篇实现的效果,相信大家都不会感觉太困难,我要实现的效果是什么样呢?下面请先看效果图: 看上去是不很炫的样子,它的实现上也不是很复杂,重点在与onDraw()方法的绘制. 首 ...
- CSS3伸缩盒Flexible Box
这是一种全新的布局,在移动端非常实用,IE对此布局的相关的兼容不是很好,Firefox.Chrome.Safrai等需要加浏览器前缀. 先说说这种布局的特点: 1)移动端由于屏幕宽度都不一样,在布局的 ...
- Oracle从文件系统迁移到ASM存储
环境:RHEL 6.4 + Oracle 11.2.0.4 需求:数据库存储由文件系统迁移到ASM 数据库存储迁移到ASM磁盘组 1.1 编辑参数文件指定新的控制文件路径 1.2 启动数据库到nomo ...
- 一步一步开发Game服务器(五)地图寻路
目前大多数使用的寻路算法有哪些? 目前市面上大部分游戏的寻路算法是A*,或者B*. A*通常所说的是最优算法也就是寻找最短路径.B*碰撞式算法也就是,也就是不断的去碰撞能走就走,不管是不是绕路.当然以 ...
- Kafka 如何读取offset topic内容 (__consumer_offsets)
众所周知,由于Zookeeper并不适合大批量的频繁写入操作,新版Kafka已推荐将consumer的位移信息保存在Kafka内部的topic中,即__consumer_offsets topic,并 ...
- Basic Tutorials of Redis(2) - String
This post is mainly about how to use the commands to handle the Strings of Redis.And I will show you ...
- 兼容SQLSERVER、Oracle、MYSQL、SQLITE的超级DBHelper
本示例代码的关键是利用.net库自带的DbProviderFactory来生产数据库操作对象. 从下图中,可以看到其的多个核心方法,这些方法将在我们的超级DBHelper中使用. 仔细研究,你会发现每 ...
- linux中字体的安装以及Terminal字体重叠问题解决
安装wps的时候,经常会提示你系统字体缺失,这些字体网上都有,就不分享了,直接讲安装吧. 就比如这个Wingdings字体,在字体目录中新建一个目录Wingdings,将ttf字体文件复制进去,在终端 ...
- IO模型
前言 说到IO模型,都会牵扯到同步.异步.阻塞.非阻塞这几个词.从词的表面上看,很多人都觉得很容易理解.但是细细一想,却总会发现有点摸不着头脑.自己也曾被这几个词弄的迷迷糊糊的,每次看相关资料弄明白了 ...