BZOJ 2440: [中山市选2011]完全平方数 [容斥原理 莫比乌斯函数]
2440: [中山市选2011]完全平方数
Time Limit: 10 Sec Memory Limit: 128 MB
Submit: 3028 Solved: 1460
[Submit][Status][Discuss]
Description
小 X 自幼就很喜欢数。但奇怪的是,他十分讨厌完全平方数。他觉得这些
数看起来很令人难受。由此,他也讨厌所有是完全平方数的正整数倍的数。然而
这丝毫不影响他对其他数的热爱。
这天是小X的生日,小 W 想送一个数给他作为生日礼物。当然他不能送一
个小X讨厌的数。他列出了所有小X不讨厌的数,然后选取了第 K个数送给了
小X。小X很开心地收下了。
然而现在小 W 却记不起送给小X的是哪个数了。你能帮他一下吗?
Input
包含多组测试数据。文件第一行有一个整数 T,表示测试
数据的组数。
第2 至第T+1 行每行有一个整数Ki,描述一组数据,含义如题目中所描述。
Output
含T 行,分别对每组数据作出回答。第 i 行输出相应的
第Ki 个不是完全平方数的正整数倍的数。
Sample Input
1
13
100
1234567
Sample Output
19
163
2030745
HINT
对于 100%的数据有 1 ≤ Ki ≤ 10^9, T ≤ 50
求第k个无平方因子数
二分这个数mid
小于sqrt(mid)的质数都可能成为平方因子,而一个数位平方因子数必定含有一个质数的组合(不一定是几个质数)的平方
根据容斥原理,[1,mid]中无平方因子数的个数为
- 0个质数乘积的平方的倍数的数的数量(1的倍数)
- -每个质数的平方的倍数的数的数量(9的倍数,25的倍数,...)
- +每2个质数乘积的平方的倍数的数的数量(36的倍数,100的倍数,...)-...
也就是容斥原理的变种“奇负偶正”
对于质因子的组合p,它的倍数的个数为mid/(p*p)
只有质因子的次数都是1才会用到,正好是莫比乌斯函数.....
#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cstring>
#include <cmath>
using namespace std;
typedef long long ll;
const int N=;
inline int read(){
char c=getchar();ll x=,f=;
while(c<''||c>''){if(c=='-')f=-;c=getchar();}
while(c>=''&&c<=''){x=x*+c-'';c=getchar();}
return x*f;
}
int n;
bool notp[N];
int p[N],mu[N];
void sieve(){
mu[]=;
for(int i=;i<=N-;i++){
if(!notp[i]) p[++p[]]=i,mu[i]=-;
for(int j=;j<=p[]&&i*p[j]<=N-;j++){
int t=i*p[j];
notp[t]=;
if(i%p[j]==){
mu[t]=;
break;
}
mu[t]=-mu[i];
}
}
}
int cal(int x){
int ans=,m=sqrt(x);
for(int i=;i<=m;i++) ans+=x/(i*i)*mu[i];
return ans;
}
int sol(){
int l=n,r=n<<,ans=-;
while(l<=r){
ll mid=l+((r-l)>>),sum=cal(mid);//printf("hi %d %d\n",mid,sum);
if(sum<n) l=mid+;
else ans=mid,r=mid-;
}
return ans;
}
int main(){
sieve();
int T=read();
while(T--){
n=read();
printf("%d\n",sol());
}
}
BZOJ 2440: [中山市选2011]完全平方数 [容斥原理 莫比乌斯函数]的更多相关文章
- BZOJ 2440 [中山市选2011]完全平方数 (二分 + 莫比乌斯函数)
2440: [中山市选2011]完全平方数 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 4805 Solved: 2325[Submit][Sta ...
- bzoj 2440: [中山市选2011]完全平方数【莫比乌斯函数+二分】
二分答案,然后用莫比乌斯函数作为容斥系数,计算当前枚举的mid内有几个满足要求的数 #include<iostream> #include<cstdio> #include&l ...
- BZOJ 2440 [中山市选2011]完全平方数 | 莫比乌斯函数
BZOJ 2440 [中山市选2011]完全平方数 | 莫比乌斯函数 题面 找出第k个不是平方数的倍数的数(1不是平方数, \(k \le 10^9\)). 题解 首先二分答案,问题就转化成了求\([ ...
- BZOJ 2440: [中山市选2011]完全平方数( 二分答案 + 容斥原理 + 莫比乌斯函数 )
先二分答案m,<=m的有m-∑(m/pi*pi)+∑(m/pi*pi*pj*pj)-……个符合题意的(容斥原理), 容斥系数就是莫比乌斯函数μ(预处理)... ----------------- ...
- Bzoj 2440: [中山市选2011]完全平方数(莫比乌斯函数+容斥原理+二分答案)
2440: [中山市选2011]完全平方数 Time Limit: 10 Sec Memory Limit: 128 MB Description 小 X 自幼就很喜欢数.但奇怪的是,他十分讨厌完全平 ...
- 【BZOJ】2440: [中山市选2011]完全平方数(莫比乌斯+容斥原理+二分)
http://www.lydsy.com/JudgeOnline/problem.php?id=2440 我觉得网上很多题解都没说清楚...(还是我太弱了? 首先我们可以将问题转换为判定性问题,即给出 ...
- [BZOJ 2440] [中山市选2011] 完全平方数 【二分 + 莫比乌斯函数】
题目链接:BZOJ - 2440 题目分析 首先,通过打表之类的方法可以知道,答案不会超过 2 * k . 那么我们使用二分,对于一个二分的值 x ,求出 [1, x] 之间的可以送出的数有多少个. ...
- BZOJ.2440.[中山市选2011]完全平方数(莫比乌斯函数 二分)
题目链接 总感觉博客园的\(Markdown\)很..\(gouzhi\),可以看这的. 题意即求第\(k\)个无平方因子数. 无平方因子数(Square-Free Number),即分解之后所有质因 ...
- bzoj 2440: [中山市选2011]完全平方数
#include<cstdio> #include<iostream> #include<cstring> #include<cmath> #defin ...
随机推荐
- .net 分布式架构之分布式锁实现
分布式锁 经常用于在解决分布式环境下的业务一致性和协调分布式环境. 实际业务场景中,比如说解决并发一瞬间的重复下单,重复确认收货,重复发现金券等. 使用分布式锁的场景一般不能太多. 开源地址:http ...
- 数据库日常维护-CheckList_02有关数据库备份检查
数据库备份是DB日常运维中最基本的也是最重要的工作,很多情况下都是做成作业形式实现自动化周期性的做全备.差异以及日志备份.那么,如果作业出现问题没有完成工作,我们可以设置自动报警如email被动提醒我 ...
- ARM CPU大小端
ARM CPU大小端: 大端模式:低位字节存在高地址上,高位字节存在低地址上 小端模式:高位字节存在高地址上,低位字节存在低地址上 STM32属于小端模式,简单的说,比如u32 temp=0X1234 ...
- javascript的变量作用域--对比js、php和c的for循环
为什么要写这篇文章呢?主要是给自己提个醒,js的水很深,需要小心点儿才能趟过去,更何况自己不是专业人士,那就得更加小心了. 看下面的js代码: <!DOCTYPE html> <ht ...
- 使用TypeScript拓展你自己的VS Code!
0x00 前言 在前几天的美国纽约,微软举行了Connect(); //2015大会.通过这次大会,我们可以很高兴的看到微软的确变得更加开放也更加务实了.当然,会上放出了不少新产品和新功能,其中就包括 ...
- .Net 序列化(去除默认命名空间,添加编码)
1.序列化注意事项 (1).Net 序列化是基于对象的.所以只有实例字段呗序列化.静态字段不在序列化之中. (2)枚举永远是可序列化的. 2.XML序列化时去除默认命名空间xmlns:xsd和xmln ...
- TeamCity : Build 基本配置
前文中我们在 TeamCity 中创建了一个项目 HelloApp,并在这个项目中创建了一个名为 HelloAppDailyBuild 的Build 用来编译 demo 程序.本文我们将详细介绍 Bu ...
- 解决Bash On Ubuntu On Window安装Zsh无效问题附安装说明
前言 Zsh是一款非常棒的Shell,使用Linux和Mac系统的人,基本上都知道zsh的存在. 问题 在安装完Zsh后,zsh是可以使用的,但是重启之后,又恢复至默认的bash. 我在安装好之后,使 ...
- sql 分组取最新的数据sqlserver巧用row_number和partition by分组取top数据
SQL Server 2005后之后,引入了row_number()函数,row_number()函数的分组排序功能使这种操作变得非常简单 分组取TOP数据是T-SQL中的常用查询, 如学生信息管理系 ...
- 决策树ID3算法的java实现(基本试用所有的ID3)
已知:流感训练数据集,预定义两个类别: 求:用ID3算法建立流感的属性描述决策树 流感训练数据集 No. 头痛 肌肉痛 体温 患流感 1 是(1) 是(1) 正常(0) 否(0) 2 是(1) 是(1 ...