WeQuant交易策略—NATR
策略名称:NATR策略
关键词:规范真实波幅、价格突破。
NATR,是对ATR指标进行了标准化。主要应用于了解价格的震荡幅度和节奏,在窄幅整理行情中用于寻找突破时机。本策略在当前价格高于之前价格一定倍数NATR时全仓买入,低于一定倍数NATR时全仓卖出。
方法:
1)利用规范化的真实波幅来构造上下轨;
2)价格突破上轨买入;
3)价格突破下轨卖出。
代码
# !/usr/bin/env python
# -*- coding: utf-8 -*-
# 策略代码总共分为三大部分,1)PARAMS变量 2)initialize函数 3)handle_data函数
# 请根据指示阅读。或者直接点击运行回测按钮,进行测试,查看策略效果。
# 策略名称:NATR策略
# 关键词:规范真实波幅、价格突破。
# 方法:
# 1)利用规范化的真实波幅来构造上下轨;
# 2)价格突破上轨买入;
# 3)价格突破下轨卖出。
import numpy as np
import talib
# 阅读1,首次阅读可跳过:
# PARAMS用于设定程序参数,回测的起始时间、结束时间、滑点误差、初始资金和持仓。
# 可以仿照格式修改,基本都能运行。如果想了解详情请参考新手学堂的API文档。
PARAMS = {
"start_time": "2017-02-01 00:00:00", # 回测起始时间
"end_time": "2017-08-01 00:00:00", # 回测结束时间
"slippage": 0.003, # # 此处“slippage"包含佣金(千二)+交易滑点(千一)
"account_initial": {"huobi_cny_cash": 100000,
"huobi_cny_btc": 0}, # 设置账户初始状态
}
# 阅读2,遇到不明白的变量可以跳过,需要的时候回来查阅:
# initialize函数是两大核心函数之一(另一个是handle_data),用于初始化策略变量。
# 策略变量包含:必填变量,以及非必填(用户自己方便使用)的变量
def initialize(context):
# 设置回测频率, 可选:"1m", "5m", "15m", "30m", "60m", "4h", "1d", "1w"
context.frequency = "4h"
# 设置回测基准, 比特币:"huobi_cny_btc", 莱特币:"huobi_cny_ltc", 以太坊:"huobi_cny_eth"
context.benchmark = "huobi_cny_btc"
# 设置回测标的, 比特币:"huobi_cny_btc", 莱特币:"huobi_cny_ltc", 以太坊:"huobi_cny_eth"
context.security = "huobi_cny_btc"
# 设定NATR的参数
# NATR算法回看天数,此处设置为10天
context.user_data.natr_period = 10
# 当前价格与之前1天的价格相比较
context.user_data.pre_period = 1
# 多头NATR的倍数
context.user_data.long_multi = 0.1
# 空头NATR的倍数
context.user_data.short_multi = 0.1
# 至此initialize函数定义完毕。
# 阅读3,策略核心逻辑:
# handle_data函数定义了策略的执行逻辑,按照frequency生成的bar依次读取并执行策略逻辑,直至程序结束。
# handle_data和bar的详细说明,请参考新手学堂的解释文档。
def handle_data(context):
# 获取回看时间窗口内的历史数据
hist = context.data.get_price(context.security, count=context.user_data.natr_period + 1, frequency="1d")
if len(hist.index) < context.user_data.natr_period + 1:
context.log.warn("bar的数量不足, 等待下一根bar...")
return
# 收盘价
close = np.array(hist["close"])
# 最高价
high = np.array(hist["high"])
# 最低价
low = np.array(hist["low"])
# 使用talib计算NATR
try:
# 获取最新的NATR值
natr = talib.NATR(high, low, close, timeperiod=context.user_data.natr_period)[-1]
except:
context.log.error("计算ATR时出现错误...")
return
# 获取最新价格
current_price = context.data.get_current_price(context.security)
# 获取context.user_data.pre_period个bar前的价格
prev_price = close[-(context.user_data.pre_period + 1)]
# 计算上下轨
upper = prev_price + context.user_data.long_multi * natr
lower = prev_price - context.user_data.short_multi * natr
context.log.info("当前价格=%s元, 上轨=%s元, 下轨=%s元" % (current_price, upper, lower))
# 如果当前价格比之前价格低1个NATR,产生卖出信号
if current_price < lower:
context.log.info("价格超过了下轨,产生卖出信号")
# 若持有仓位,则全仓卖出
if context.account.huobi_cny_btc >= HUOBI_CNY_BTC_MIN_ORDER_QUANTITY:
context.log.info("正在卖出 %s" % context.security)
context.log.info("卖出数量为 %s" % context.account.huobi_cny_btc)
context.order.sell_limit(context.security, quantity=str(context.account.huobi_cny_btc), price=str(close[-1] * 0.98))
else:
context.log.info("仓位不足,无法卖出")
# 如果当前价格比之前价格高1个NATR,产生买入信号
elif current_price > upper:
context.log.info("价格超过了上轨,产生买入信号")
# 若持有现金,则全仓买入
if context.account.huobi_cny_cash >= HUOBI_CNY_BTC_MIN_ORDER_CASH_AMOUNT:
context.log.info("正在买入 %s" % context.security)
context.log.info("下单金额为 %s 元" % context.account.huobi_cny_cash)
context.order.buy_limit(context.security, quantity=str(context.account.huobi_cny_cash/close[-1]*0.98), price=str(close[-1]*1.02))
else:
context.log.info("现金不足,无法下单")
else:
context.log.info("无交易信号,进入下一根bar")
回测

WeQuant交易策略—NATR的更多相关文章
- WeQuant交易策略—网格交易
网格交易策略(Grid Trading) 策略介绍 网格策略本质上是一种低吸高抛的策略.标的物价格越低,吸纳的头寸越多:标的物价格越高,卖出的头寸越多.网格策略巧妙地借鉴了日常生活中渔翁撒网扑鱼的思路 ...
- WeQuant交易策略—Dual Thrust
Dual Thrust策略 策略介绍 Dual Thrust是一个趋势跟踪系统,由Michael Chalek在20世纪80年代开发,曾被Future Thruth杂志评为最赚钱的策略之一. Dual ...
- WeQuant交易策略—ATR
ATR(真实波幅均值)策略 策略介绍 ATR(average true range,真实波幅均值),是用来衡量一段时间内价格的真实的平均波动范围,ATR不是一个领先指标,但是它测量最重要的市场参数之一 ...
- WeQuant交易策略—RSI
RSI指标策略 策略介绍 RSI(相对强弱指标),是通过一段时期内的平均收盘上涨和下跌数,计算价格上涨所产生的波动占整个波动的百分比,来分析市场买卖盘的意向和实力. 计算公式(以日为单位举例) RSI ...
- WeQuant交易策略—BOLL
BOLL(布林线指标)策略 简介 BOLL(布林线)指标是技术分析的常用工具之一,由美国股市分析家约翰•布林根据统计学中的标准差原理设计出来的一种非常简单实用的技术分析指标.一般而言,价格的运动总是围 ...
- WeQuant交易策略—KDJ
KDJ随机指标策略策略介绍KDJ指标又叫随机指标,是一种相当新颖.实用的技术分析指标,它起先用于期货市场的分析,后被广泛用于股市的中短期趋势分析,是期货和股票市场上最常用的技术分析工具.随机指标KDJ ...
- WeQuant交易策略—MACD
MACD(指数平滑异同平均线)策略简介MACD指标应该是大家最常见的技术指标,在很多股票.比特币的软件中都是默认显示的.MACD是从双指数移动平均线发展而来的.意义和双移动平均线基本相同,即由快.慢均 ...
- WeQuant交易策略—简单均线
简单双均线策略(Simple Moving Average) 策略介绍简单双均线策略,通过一短一长(一快一慢)两个回看时间窗口收盘价的简单移动平均绘制两条均线,利用均线的交叉来跟踪价格的趋势.这里说的 ...
- WeQuant交易策略—EMV
EMV指标策略 简介 EMV(Ease of Movement Value, 简易波动指标),它是由RichardW.ArmJr.根据等量图和压缩图的原理设计而成, 目的是将价格与成交量的变化结合成一 ...
随机推荐
- (转)FastJson---高性能JSON开发包
场景:javaBean对象转化为json对象! 1 Fastjson介绍 Fastjson是一个Java语言编写的JSON处理器,由阿里巴巴公司开发.1.遵循http://json.org标准,为其官 ...
- 如何使用命令行cmd执行java程序
如果你的电脑上没有像idea eclipse这类的IDE,但是因为工作需要必须要执行java代码怎么办呢? 这个时候就需要使用电脑最原始的执行方式 既命令行 1:首先你得安装了jdk与jre (这里就 ...
- XML 入门 - XML 系统教程(1)
XML (Extensible Markup Language)指可扩展标记语言. 组成 <?xml version="1.0" encoding="UTF-8&q ...
- struts2上传文件类型列表
'.a' : 'application/octet-stream', '.ai' : 'application/postscript', '.aif' ...
- hdu--1711--kmp应用在整形数组--Number Sequence
/* Name: hdu--1711--Number Sequence Author: shen_渊 Date: 16/04/17 19:58 Description: 第一次知道,KMP能用在整形数 ...
- 用python语言编写网络爬虫
本文主要用到python3自带的urllib模块编写轻量级的简单爬虫.至于怎么定位一个网页中具体元素的url可自行百度火狐浏览器的firebug插件或者谷歌浏览器的自带方法. 1.访问一个网址 re= ...
- Html常用标签元素
Html常用标签元素 Html常用标签元素 常用HTML标签元素结合及简介 <html></html> 创建一个HTML文档 <head></head> ...
- JavaScript闭包,只学这篇就够了
# 闭包不是魔法 这篇文章使用一些简单的代码例子来解释JavaScript闭包的概念,即使新手也可以轻松参透闭包的含义. 其实只要理解了核心概念,闭包并不是那么的难于理解.但是,网上充斥了太多学术性的 ...
- mybatis 详解(十)------ 逆向工程
通过前面的学习,在实际开发中,我们基本上能对mybatis应用自如了,但是我们发现了一个问题,所有操作都是围绕着po类,xxxMapper.xml文件,xxxMapper接口等文件来进行的.如果实际开 ...
- HTML 超链接 表格
1...超链接 <a href="网址" target="_blank"> 被点击的文字</a> 如果把 target 属性设置为&qu ...