POJ2279 Mr Young's Picture Permutations
POJ2279 Mr Young's Picture Permutations
描述: 有N个学生合影,站成左对齐的k排,每行分别有N1,N2…NK个人,第一排站最后,第k排站之前。
学生身高依次是1…N。在合影时候要求每一排从左到右递减,每一列从后面到前也递减,一共有多少总方案
输入
每组测试数据包含两行。第一行给出行数k。第二行包含从后到前(n1,n2,…,nk)的行的长度,作为由单个空格分隔的十进制整数。
问题数据以0结束。
N<=30, k<=5;
输出 输出每组数据的方案数
样例输入
1
30
5
1 1 1 1 1
3
3 2 1
4
5 3 3 1
5
6 5 4 3 2
2
15 15
0
样例输出
1
1
16
4158
141892608
9694845
- 法一: dp
用一个k元组来表示每一行已经确定的人数即可描述一个状态,进行转移即可。
tip:从本题中可知,设计动态规划的状态转移方程不一定要以如何计算出一个状态的形式给出,也可以考虑用一个已知的状态更新后续阶段的状态
#include <cstdio>
#include <iostream>
#include <cstring>
using namespace std;
long long dp[][][][][];//空间注意计算,否则会开爆(31,31/2,31/3...)
//f(a1,a2,a3,a4,a5)表示第i层有a[i]个人时的方案数
int k,num[];
int main()
{
while(scanf("%d",&k) && k)
{
memset(dp,,sizeof(dp));
memset(num,,sizeof(num));
for(int i= ; i<=k ; i++) scanf("%d",&num[i]);
dp[][][][][]=;
for(int i= ; i<=num[] ; i++)
{
for(int j= ; j<=num[] ; j++)
{
for(int k= ; k<=num[] ; k++)
{
for(int l= ; l<=num[] ; l++)
{
for(int p= ; p<=num[] ; p++)
{
if(i+<=num[])
dp[i+][j][k][l][p]+=dp[i][j][k][l][p];
if(j+<=num[]&&j<i)
dp[i][j+][k][l][p]+=dp[i][j][k][l][p];
if(k+<=num[]&&k<j&&k<i)
dp[i][j][k+][l][p]+=dp[i][j][k][l][p];
if(l+<=num[]&&l<k&&l<j&&l<i)
dp[i][j][k][l+][p]+=dp[i][j][k][l][p];
if(p+<=num[]&&p<l&&p<k&&p<j&&p<i)
dp[i][j][k][l][p+]+=dp[i][j][k][l][p]; }
}
}
}
}
printf("%lld\n",dp[num[]][num[]][num[]][num[]][num[]]);
}
return ;
}
- 法二:(数学解法)杨氏矩阵和勾长公式
转载:巨佬博客
杨氏矩阵又叫杨氏图表,它是这样一个矩阵,满足条件:
(1)如果格子(i,j)没有元素,则它右边和上边的相邻格子也一定没有元素。
(2)如果格子(i,j)有元素a[i][j] a[i][j]a[i][j],则它右边和上边的相邻格子要么没有元素,要么有元素且比a[i][j] a[i][j]a[i][j]大。
1 ~ n所组成杨氏矩阵的个数可以通过下面的递推式得到:如图就是n=3时的杨氏矩阵。
下面介绍一个公式,那就是著名的钩子公式。
对于给定形状,不同的杨氏矩阵的个数为:n!除以每个格子的钩子长度加1的积。其中钩子长度定义:每个格子右边的格子数和它上边的格子数之和。
代码:
#include <cstdio>
#include <iostream>
#include <cstring>
using namespace std; inline int gcd(int a,int b)
{
return (b==)?a:gcd(b,a%b);
}
int d[],num[];
int n;
int main()
{
while(scanf("%d",&n)&&n)
{
int tot=;
memset(num,,sizeof(num));
for(int i= ; i<=n ; i++) scanf("%d",&d[i]);
for(int i=n ; i>= ; i--)
for(int j= ; j<=d[i] ; j++)
{
tot++;
for(int k=i+ ; k<=n ; k++)
if(d[k]>=j) num[tot]++;
else break;
num[tot]+=d[i]-j+;
}
long long t1=,t2=;
for(int i= ; i<=tot ; i++)
{
t1*=i; t2*=num[i];
int t=gcd(t1,t2);
t1/=t,t2/=t;
}
printf("%lld\n",t1/t2);
}
return ;
}
POJ2279 Mr Young's Picture Permutations的更多相关文章
- 【题解】POJ2279 Mr.Young′s Picture Permutations dp
[题解]POJ2279 Mr.Young′s Picture Permutations dp 钦定从小往大放,然后直接dp. \(dp(t1,t2,t3,t4,t5)\)代表每一行多少人,判断边界就能 ...
- poj2279——Mr. Young's Picture Permutations
Description Mr. Young wishes to take a picture of his class. The students will stand in rows with ea ...
- poj2279 Mr. Young's Picture Permutations[勾长公式 or 线性DP]
若干人左对齐站成最多5行,给定每行站多少个,列数从第一排开始往后递减.要求身高从每排从左到右递增(我将题意篡改了便于理解233),每列从前向后递增.每个人身高为1...n(n<=30)中的一个数 ...
- bzoj 2483: Pku2279 Mr. Young's Picture Permutations -- 钩子公式
2483: Pku2279 Mr. Young's Picture Permutations Time Limit: 1 Sec Memory Limit: 128 MB Description ...
- 轮廓线DP:poj 2279 Mr. Young's Picture Permutations
poj 2279 Mr. Young's Picture Permutations \(solution:\) 首先摘取一些关键词:(每行不超过它后面的行)(每排学生安排高度从左到右减少)(学生的高度 ...
- Mr. Young's Picture Permutations
Mr. Young's Picture Permutations 给出一个有k列的网格图,以及每列图形的高度\(n_i\),下端对齐,保证高度递减,设有n个网格,询问向其中填1~n保证每行每列单调递增 ...
- 【杨氏矩阵+勾长公式】POJ 2279 Mr. Young's Picture Permutations
Description Mr. Young wishes to take a picture of his class. The students will stand in rows with ea ...
- [POJ 2279] Mr. Young's Picture Permutations
[题目链接] http://poj.org/problem?id=2279 [算法] 杨氏矩阵与勾长公式 [代码] #include <algorithm> #include <bi ...
- POJ P2279 Mr. Young's Picture Permutations 题解
每日一题 day14 打卡 Analysis 五维dpf[a1,a2,a3,a4,a5]表示各排从左端起分别占了a1,a2,a3,a4,a5个人时合影方案数量然后我们枚举a1,a2,a3,a4,a5从 ...
随机推荐
- svn: Can't connect to host
关于“svn: Can't connect to host '*.*.*.*': 由于连接方在一段时间后没有正确答复或连接”的解决方法 阿里云服务器环境(PHP+Nginx+MySQL) [原因1 ...
- solr 搭建 (基于solr-5.0.0)
1)去官网下载solr 2)去官网下载Tomcat 3)在D盘建一个文件夹(我在此建立了一个文件夹(命名为:sorl_lf)) 4)解压Tomcat(如果已经安装了Tomcat,请配置支持多个Tomc ...
- 安装运行okvis odometry
源码链接https://github.com/ethz-asl/okvis 1. 安装依赖项 sudo apt-get install cmake sudo apt-get install libgo ...
- Emgu CV的配置以及在VS 2012中进行图像处理的步骤和实例
说明: 1.所使用的Emgu CV是目前的最新版本3.1.0,下载链接为:https://sourceforge.net/projects/emgucv/files/emgucv/3.1.0/(我选的 ...
- [C++] Pure Virtual Function and Abstract Class
Pure Virtual Function Abstract Class
- bootstrap实现去点列表、内联列表、水平定义列表
内联列表:通过添加类名“.list-inline”来实现内联列表,简单点说就是把垂直列表换成水平列表,而且去掉项目符号(编号),保持水平显示. 去点列表:通过给无序列表添加一个类名“.list-uns ...
- 编写高质量代码改善C#程序的157个建议——建议149:使用表驱动法避免过长的if和switch分支
建议149:使用表驱动法避免过长的if和switch分支 随着代码变得复杂,我们很容易被过长的if和switch分支困扰. 一个类枚举类型Week如下: enum Week { Monday, Tue ...
- 编写高质量代码改善C#程序的157个建议——建议148:不重复代码
建议148:不重复代码 如果发现重复的代码,则意味着我们需要整顿一下,在继续前进. 重复的代码让我们的软件行为不一致.举例来说,如果存在两处相同的加密代码.结果在某一天,我们发现加密代码有个小Bug, ...
- MFC 错误异常,用vs添加资源并为资源定义类后报错:error C2065 : 未声明的标识符
添加了一个Dialog资源,修改了ID之后右击资源添加了一个类,在类里面有一个成员变量: // 对话框数据 enum { IDD = IDD_GETIN }; 而在编译过程中出现报错,错误代号是 ...
- css flex cheat sheet
.container{ display: -webkit-flex/inline-flex; display: -moz-flex/inline-flex; display: -ms-flex/inl ...