bzoj1093: [ZJOI2007]最大半连通子图 scc缩点+dag上dp
一个有向图G=(V,E)称为半连通的(Semi-Connected),如果满足:?u,v∈V,满足u→v或v→u,即对于图中任意
两点u,v,存在一条u到v的有向路径或者从v到u的有向路径。若G'=(V',E')满足V'?V,E'是E中所有跟V'有关的边,
则称G'是G的一个导出子图。若G'是G的导出子图,且G'半连通,则称G'为G的半连通子图。若G'是G所有半连通子图
中包含节点数最多的,则称G'是G的最大半连通子图。给定一个有向图G,请求出G的最大半连通子图拥有的节点数K
,以及不同的最大半连通子图的数目C。由于C可能比较大,仅要求输出C对X的余数。
解法:把scc缩点,同一个连通分量里肯定互相可达,然后变成了dag,只需要跑一个dag上dp找最长路即可,然后需要记录一下最长路方案数,需要注意的确定点之后边就确定了,所以scc缩点时需要判一下重边
/**************************************************************
Problem: 1093
User: walfy
Language: C++
Result: Accepted
Time:4788 ms
Memory:49420 kb
****************************************************************/ //#pragma comment(linker, "/stack:200000000")
//#pragma GCC optimize("Ofast,no-stack-protector")
//#pragma GCC target("sse,sse2,sse3,ssse3,sse4,popcnt,abm,mmx,avx,tune=native")
//#pragma GCC optimize("unroll-loops")
#include<bits/stdc++.h>
#define fi first
#define se second
#define mp make_pair
#define pb push_back
#define pi acos(-1.0)
#define ll long long
#define vi vector<int>
#define mod 1000000007
#define C 0.5772156649
#define ls l,m,rt<<1
#define rs m+1,r,rt<<1|1
#define pil pair<int,ll>
#define pli pair<ll,int>
#define pii pair<int,int>
#define cd complex<double>
#define ull unsigned long long
#define base 1000000000000000000
#define fio ios::sync_with_stdio(false);cin.tie(0) using namespace std; const double g=10.0,eps=1e-;
const int N=+,maxn=+,inf=0x3f3f3f3f,INF=0x3f3f3f3f3f3f3f3f; int n,m,X;
stack<int>s;
vector<int>v[N],vv[N],ans[N];
int dfn[N],low[N];
int ins[N],inans[N];
int num,ind;
int a[maxn],b[maxn];
void tarjan(int u)
{
ins[u]=;
low[u]=dfn[u]=++ind;
s.push(u);
for(int i=;i<v[u].size();i++)
{
int t=v[u][i];
if(dfn[t]==)
{
tarjan(t);
low[u]=min(low[u],low[t]);
}
else if(ins[t]==)low[u]=min(low[u],dfn[t]);
}
if(low[u]==dfn[u])
{
++num;
while(!s.empty()){
int k=s.top();
s.pop();
ins[k]=;
ans[num].push_back(k);
inans[k]=num;
if(k==u)break;
}
}
}
map<pii,int>ma;
void scc()
{
for(int i=;i<=n;i++)
if(!dfn[i])
tarjan(i);
for(int i=;i<m;i++)
{
int x=inans[a[i]],y=inans[b[i]];
if(x!=y&&!ma[mp(x,y)])vv[x].pb(y),ma[mp(x,y)]=;
}
}
pii dp[N];
pii DP(int u)
{
if(dp[u].fi!=-)return dp[u];
dp[u].fi=ans[u].size(),dp[u].se=;
for(int i=;i<vv[u].size();i++)
{
int x=vv[u][i];pii te=DP(x);
if(dp[u].fi<te.fi+ans[u].size())
{
dp[u]=te,dp[u].fi=te.fi+ans[u].size();
// printf("%d %d %d %d\n",u,x,dp[u].fi,dp[u].se);
}
else if(dp[u].fi==te.fi+ans[u].size())
{
dp[u].se=(dp[u].se+te.se)%X;
// printf("%d %d %d +++%d\n",u,x,dp[u].se,te.se);
}
}
return dp[u];
}
int main()
{
scanf("%d%d%d",&n,&m,&X);
for(int i=;i<m;i++)
{
scanf("%d%d",&a[i],&b[i]);
v[a[i]].pb(b[i]);
}
scc();
memset(dp,-,sizeof dp);
for(int i=;i<=n;i++)
DP(i);
int ma=;
for(int i=;i<=num;i++)ma=max(ma,dp[i].fi);//,printf("%d %d\n",dp[i].fi,dp[i].se);
int ans=;
for(int i=;i<=num;i++)if(dp[i].fi==ma)ans=(ans+dp[i].se)%X;
printf("%d\n%d\n",ma,ans);
return ;
}
/*********************** ***********************/
bzoj1093: [ZJOI2007]最大半连通子图 scc缩点+dag上dp的更多相关文章
- BZOJ1093 ZJOI2007最大半连通子图(缩点+dp)
发现所谓半连通子图就是缩点后的一条链之后就是个模板题了.注意缩点后的重边.写了1h+真是没什么救了. #include<iostream> #include<cstdio> # ...
- [luogu2272 ZJOI2007] 最大半连通子图 (tarjan缩点 拓扑排序 dp)
传送门 题目描述 一个有向图G=(V,E)称为半连通的(Semi-Connected),如果满足:?u,v∈V,满足u→v或v→u,即对于图中任意两点u,v,存在一条u到v的有向路径或者从v到u的有向 ...
- [ZJOI2007]最大半连通子图 (Tarjan缩点,拓扑排序,DP)
题目链接 Solution 大概是个裸题. 可以考虑到,如果原图是一个有向无环图,那么其最大半联通子图就是最长的一条路. 于是直接 \(Tarjan\) 缩完点之后跑拓扑序 DP就好了. 同时由于是拓 ...
- 2018.11.06 bzoj1093: [ZJOI2007]最大半连通子图(缩点+拓扑排序)
传送门 先将原图缩点,缩掉之后的点权就是连通块大小. 然后用拓扑排序统计最长链数就行了. 自己yyyyyy了一下一个好一点的统计方法. 把所有缩了之后的点都连向一个虚点. 然后再跑拓扑,这样最后虚点的 ...
- [ZJOI2007]最大半连通子图(Tarjan,拓扑序DP)
[ZJOI2007]最大半连通子图 题目描述 一个有向图G=(V,E)称为半连通的(Semi-Connected),如果满足:?u,v∈V,满足u→v或v→u,即对于图中任意两点u,v,存在一条u到v ...
- BZOJ1093 [ZJOI2007]最大半连通子图 【tarjan缩点 + DAG最长路计数】
题目 一个有向图G=(V,E)称为半连通的(Semi-Connected),如果满足:?u,v∈V,满足u→v或v→u,即对于图中任意 两点u,v,存在一条u到v的有向路径或者从v到u的有向路径.若G ...
- BZOJ1093 [ZJOI2007]最大半连通子图
Description 一个有向图G=(V,E)称为半连通的(Semi-Connected),如果满足:?u,v∈V,满足u→v或v→u,即对于图中任意两点u,v,存在一条u到v的有向路径或者从v到u ...
- bzoj1093[ZJOI2007]最大半连通子图(tarjan+拓扑排序+dp)
Description 一个有向图G=(V,E)称为半连通的(Semi-Connected),如果满足:?u,v∈V,满足u→v或v→u,即对于图中任意两点u,v,存在一条u到v的有向路径或者从v到u ...
- 【tarjan 拓扑排序 dp】bzoj1093: [ZJOI2007]最大半连通子图
思维难度不大,关键考代码实现能力.一些细节还是很妙的. Description 一个有向图G=(V,E)称为半连通的(Semi-Connected),如果满足:?u,v∈V,满足u→v或v→u,即对于 ...
随机推荐
- Linux SSH免登录配置总结(转)
转载请出自出处:http://eksliang.iteye.com/blog/2187265 一.原理 我们使用ssh-keygen在ServerA上生成私钥跟公钥,将生成的公钥拷贝到远程机器Serv ...
- Java中二叉树存储结构实现
一.二叉树 二叉树指的是每个节点最多只能有两个子树的有序树.通常左边的子树被称为“左子树”(left subtree),右边的子树被称为右子树. 二叉树的每个节点最多只有2棵子树,二叉树的子树次序不能 ...
- 基于.net core2.1开发遇到的问题记录以及解决方案
问题1:升级EFCore 到2.1一直报'Void Microsoft.EntityFrameworkCore.Storage.Internal.RelationalCommandBuilderFac ...
- H5移动端的一些坑、、、
H5项目常见问题及注意事项 Meta基础知识: H5页面窗口自动调整到设备宽度,并禁止用户缩放页面 //一.HTML页面结构 <meta name="viewport" co ...
- PageObject模式的层次结构
做过UI自动化的都晓得,在做UI自动化时定位特别依赖页面,一旦页面发生变更就不得不跟着去修改页面定位. 在webdriver中,假设你想对一个元素定位操作,那么你可能会编写下面的代码: driver. ...
- mysql数据库从删库到跑路之mysq索引
一 介绍 为何要有索引? 一般的应用系统,读写比例在10:1左右,而且插入操作和一般的更新操作很少出现性能问题,在生产环境中,我们遇到最多的,也是最容易出问题的,还是一些复杂的查询操作,因此对查询语句 ...
- 什么是Java中的原子操作( atomic operations)
1.啥是java的原子性 原子性:即一个操作或者多个操作 要么全部执行并且执行的过程不会被任何因素打断,要么就都不执行. 一个很经典的例子就是银行账户转账问题: 比如从账户A向账户B转1000元,那么 ...
- opkg 不能更新和安装openwrt软件的方法
首先,将所有的IPK 放在自己的虚拟HTTP服务器上.2,用Telnet进入路由器,使用VI编辑器,编程Opkg.conf,命令: vi /etc/opkg.conf3,修改文件,将第一行 ...
- keras安装配置指南【linux环境】【转】
本文转载自:https://keras-cn.readthedocs.io/en/latest/for_beginners/keras_linux/#kerasmnist 本教程不得用于任何形式的商业 ...
- backstopJS 参数详解 CN
最近需要进行前端UI验证,详细研究了下backstopJS.官方文档为En,手动翻译了下.相关参数信息如下: 如需转载引用,请保留原文出处,支持原创,感谢.