【BZOJ】1951[Sdoi2010]古代猪文
【题意】给定G,N,求:
$$ans=G^{\sum_{i|n}\binom{n}{i}}\ \mod\ \ p$$
1<=N,G<=10^9,p=999911659。
【算法】欧拉定理+组合数取模(lucas)+中国剩余定理(CRT)
【题解】
先考虑简化幂运算,因为模数为素数,由欧拉定理可知G^k=G^(k%φ(p)) mod p,显然G^(k%φ(p)) mod p可以用快速幂求解
但是欧拉定理要求(G,p)=1,当G=p时不满足条件,可以特判答案为0或者用扩展欧拉定理(b%φ(p)+(b>=φ(p)?φ(p):0))。
故我们实际要求:
$$\sum_{i|n}\binom{n}{i}\ \mod\ \ (p-1)$$
因为p是素数,φ(p)=p-1=999911658=2*3*4679*35617。
因为p-1分解后无平方因子,所以直接用lucas分别对素模数计算后用中国剩余定理合并即可(若有则需要参考bzoj礼物的方法——扩展lucas)
#include<cstdio>
#include<algorithm>
#define ll long long
using namespace std;
const int maxn=,MOD=;//999911658=2*3*4679*35617
const int p[]={,,,,};
ll a[],fac[][maxn],n,G;
ll power(ll x,ll k,ll p)
{
if(x==)return ;
ll ans=;//快速幂ans=1!
while(k>)
{
if(k&)ans=(ans*x)%p;//满足1时才累乘
x=(x*x)%p;
k>>=;
}
return ans;
}
ll C(ll n,ll m,ll k)
{
if(n<m)return ;
return fac[k][n]*power(fac[k][m],p[k]-,p[k])%p[k]*power(fac[k][n-m],p[k]-,p[k])%p[k];//n!/m!/(n-m)!
}
ll lucas(ll n,ll m,ll k)
{
if(n<m)return ;
if(n<p[k]&&m<p[k])return C(n,m,k);
return C(n%p[k],m%p[k],k)*lucas(n/p[k],m/p[k],k)%p[k];
}
int main()
{
scanf("%lld%lld",&n,&G);
if(G==MOD)
{
printf("");
return ;
}
for(int k=;k<=;k++)
{
fac[k][]=;
for(int i=;i<p[k];i++)fac[k][i]=fac[k][i-]*i%p[k];//随时记得取模
}
for(int i=;i*i<=n;i++)if(n%i==)
{
int j=n/i;
for(int k=;k<=;k++)
{
a[k]=(a[k]+lucas(n,i,k))%p[k];
if(i!=j)a[k]=(a[k]+lucas(n,j,k))%p[k];
}
}
ll M=MOD-;
ll ans=;
for(int k=;k<=;k++)ans=(ans+a[k]*M/p[k]*power(M/p[k],p[k]-,p[k]))%M;
printf("%lld",power(G,ans,MOD));
return ;
}
【BZOJ】1951[Sdoi2010]古代猪文的更多相关文章
- BZOJ 1951: [Sdoi2010]古代猪文( 数论 )
显然答案是G^∑C(d,N)(d|N).O(N^0.5)枚举N的约数.取模的数999911659是质数, 考虑欧拉定理a^phi(p)=1(mod p)(a与p互质), 那么a^t mod p = a ...
- BZOJ 1951: [Sdoi2010]古代猪文 [Lucas定理 中国剩余定理]
1951: [Sdoi2010]古代猪文 Time Limit: 1 Sec Memory Limit: 64 MBSubmit: 2194 Solved: 919[Submit][Status] ...
- 【刷题】BZOJ 1951 [Sdoi2010]古代猪文
Description "在那山的那边海的那边有一群小肥猪.他们活泼又聪明,他们调皮又灵敏.他们自由自在生活在那绿色的大草坪,他们善良勇敢相互都关心--" --选自猪王国民歌 很久 ...
- bzoj 1951 [Sdoi2010]古代猪文(数论知识)
[题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=1951 [思路] 一道优(e)秀(xin)的数论题. 首先我们要求的是(G^sigma{ ...
- bzoj 1951 [Sdoi2010]古代猪文 ——数学综合
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1951 数学综合题. 费马小定理得指数可以%999911658,又发现这个数可以质因数分解.所 ...
- bzoj 1951: [Sdoi2010]古代猪文
#include<cstdio> #include<iostream> #include<cstring> #include<cmath> #defin ...
- BZOJ.1951.[SDOI2010]古代猪文(费马小定理 Lucas CRT)
题目链接 \(Description\) 给定N,G,求\[G^{\sum_{k|N}C_n^k}\mod\ 999911659\] \(Solution\) 由费马小定理,可以先对次数化简,即求\( ...
- bzoj 1951: [Sdoi2010]古代猪文 【中国剩余定理+欧拉定理+组合数学+卢卡斯定理】
首先化简,题目要求的是 \[ G^{\sum_{i|n}C_{n}^{i}}\%p \] 对于乘方形式快速幂就行了,因为p是质数,所以可以用欧拉定理 \[ G^{\sum_{i|n}C_{n}^{i} ...
- BZOJ 1951 [SDOI2010]古代猪文 (组合数学+欧拉降幂+中国剩余定理)
题目大意:求$G^{\sum_{m|n} C_{n}^{m}}\;mod\;999911659\;$的值$(n,g<=10^{9})$ 并没有想到欧拉定理.. 999911659是一个质数,所以 ...
- BZOJ 1951: [Sdoi2010]古代猪文 ExCRT+欧拉定理+Lucas
欧拉定理不要忘记!! #include <bits/stdc++.h> #define N 100000 #define ll long long #define ull unsigned ...
随机推荐
- Alpha 冲刺5
队名:日不落战队 安琪(队长) 今天完成的任务 组织第五次站立式会议(半冲刺总结交流会). 完成草稿箱前端界面. 明天的计划 回收站前端界面. 尝试去调用数据. 还剩下的任务 信息修改前端界面. 遇到 ...
- 一些有趣的erlang项目
这里会收集一些erlang项目,有需可以转. erlang-bookmarks Scaling Erlang High Performance Erlang - Finding Bottlenecks ...
- 【转载】mysql建表date类型不能设置默认值
如题,mysql建表date类型的不能设置一个默认值,比如我这样: CREATE TABLE `new_table` ( `biryhday` datetime NULL DEFAULT '1996- ...
- 反向代理负载均衡-----nginx
一:集群 1.1:集群的概念 集群是一组相互独立的.通过高速网络互联的计算机,他们构成了一个组,并以单一系统的模式加以管理.一个客户与集群相互作用时,集群像是一个独立的服务器.集群配置是用于提高 ...
- 教你配置使用阿里云 Maven 库,体验秒下 jar 包的快感
鉴于国内的网络环境,从默认 Maven 库下载 jar 包是非常的痛苦. 速度慢就不说了,还经常是下不下来,然后一运行就是各种 ClassNotFoundException,然后你得找到残留文件删掉重 ...
- Kafka在大型应用中的 20 项最佳实践
原标题:Kafka如何做到1秒处理1500万条消息? Apache Kafka 是一款流行的分布式数据流平台,它已经广泛地被诸如 New Relic(数据智能平台).Uber.Square(移动支付公 ...
- java 类型转型
- Codeforces 627D Preorder Test(二分+树形DP)
题意:给出一棵无根树,每个节点有一个权值,现在要让dfs序的前k个结点的最小值最大,求出这个值. 考虑二分答案,把>=答案的点标记为1,<答案的点标记为0,现在的任务时使得dfs序的前k个 ...
- BZOJ 1222 产品加工(DP)
某加工厂有A.B两台机器,来加工的产品可以由其中任何一台机器完成,或者两台机器共同完成.由于受到机器性能和产品特性的限制,不同的机器加工同一产品所需的时间会不同,若同时由两台机器共同进行加工,所完成任 ...
- hive 一次性命令
1.用hive查询,而不进入hive cli,查询后的值可以保存到文件中 #使用参数-e [hadoop@bigdata-senior01 ~]$ hive -e "select * fro ...