【BZOJ】3771: Triple FTT+生成函数
【题意】给定n个物品,价值为$a_i$,物品价格互不相同,求选一个或两个或三个的价值为x的方案数,输出所有存在的x和对应方案数。$ai<=40000$。
【算法】生成函数+FFT
【题解】要求价值为x的方案数,就定义价值为“大小”(即指数),方案数为“元素个数”(即系数),物品为“选择项”(即多项式)。
设$f(x)$表示选择一个物品,价值为x的方案数。
虽然很容易想到$f^3(x)$,但因为不能重复选物品所以必须去重。而且不容易在$f^3(x)$中表示出选一个或两个物品。
①选择一个物品的方案数:$f$。
考虑$f^2$表示选择两个物品价值和为x的可重排列数。
去重需要减去两个物品相同的情况,设$g(x)$表示选择两个相同物品价值和为x的方案数,显然g可以直接得到。(枚举每个物品,在价值*2的系数处+1)。
因为生成函数乘积在两个物品相同的时候实际上没有排列,所以要先减再去排列。
②选择两个物品的方案数:$\frac{f^2-g}{2}$。
最后三个物品同理,设$h(x)$表示选择三个相同物品价值和为x的方案数,需要排除BAA,ABA,AAB,AAA的情况。
其中BAA,ABA,AAB相当于选择两个相同物品后再选一个物品(无论是否再相同),即$f*g$。
但这样会把AA重复减去三次,实际上只需要减去一次,所以容斥加回,即$h$。
③选择三个物品的方案数:$\frac{f^3-3*f*g+2*h}{2}$。
复杂度O(n log n)。
注意:先将f,g,h进行DFT,全部计算答案后再进行IDFT,才能保证精度。
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<complex>
#include<cmath>
using namespace std;
const int maxn=;
const double PI=acos(-);
int n,ans[maxn];
complex<double>f[maxn],g[maxn],h[maxn];
namespace fft{
complex<double>o[maxn],oi[maxn];
void init(int n){
for(int k=;k<n;k++)o[k]=complex<double>(cos(*PI*k/n),sin(*PI*k/n)),oi[k]=conj(o[k]);
}
void transform(complex<double>*a,int n,complex<double>*o){
int k=;
while((<<k)<n)k++;
for(int i=;i<n;i++){
int t=;
for(int j=;j<k;j++)if(i&(<<j))t|=(<<(k-j-));
if(i<t)swap(a[i],a[t]);
}
for(int l=;l<=n;l*=){
int m=l/;
for(complex<double>*p=a;p!=a+n;p+=l){
for(int i=;i<m;i++){
complex<double>t=p[i+m]*o[n/l*i];
p[i+m]=p[i]-t;
p[i]+=t;
}
}
}
}
void dft(complex<double>*a,int n){transform(a,n,o);}
void idft(complex<double>*a,int n){transform(a,n,oi);for(int i=;i<n;i++)a[i]/=n;}
}
int main(){
scanf("%d",&n);
int mx=,t;
for(int i=;i<n;i++){
scanf("%d",&t);
f[t].real();g[t*].real(),h[t*].real();
mx=max(mx,t*);
}
n=;
while(n<*mx+)n*=;
fft::init(n);
fft::dft(f,n);fft::dft(g,n);fft::dft(h,n);
complex<double>tmp2=(),tmp3=(),tmp6=();
for(int i=;i<n;i++)f[i]=(f[i]*f[i]*f[i]-tmp3*f[i]*g[i]+tmp2*h[i])/tmp6+(f[i]*f[i]-g[i])/tmp2+f[i];
fft::idft(f,n);
for(int i=;i<n;i++)ans[i]=(int)(floor(f[i].real()+0.5));
for(int i=;i<n;i++)if(ans[i])printf("%d %d\n",i,ans[i]);
return ;
}
【BZOJ】3771: Triple FTT+生成函数的更多相关文章
- bzoj 3771 Triple FFT 生成函数+容斥
Triple Time Limit: 20 Sec Memory Limit: 64 MBSubmit: 847 Solved: 482[Submit][Status][Discuss] Desc ...
- bzoj 3771: Triple【生成函数+FFT+容斥原理】
瞎搞居然1A,真是吃鲸 n的范围只有聪明人能看见--建议读题3遍 首先看计数就想到生成函数,列出多项式A(x),然后分别考虑123 对于选一个的直接计数即可: 对于选两个的,\( A(x)^2 \), ...
- [BZOJ 3771] Triple(FFT+容斥原理+生成函数)
[BZOJ 3771] Triple(FFT+生成函数) 题面 给出 n个物品,价值为别为\(w_i\)且各不相同,现在可以取1个.2个或3个,问每种价值和有几种情况? 分析 这种计数问题容易想到生成 ...
- BZOJ 3771: Triple [快速傅里叶变换 生成函数 容斥原理]
题意:n个物品,可以用1/2/3个不同的物品组成不同的价值,求每种价值有多少种方案(顺序不同算一种) [生成函数]: 构造这么一个多项式函数g(x),使得n次项系数为a[n]. 普通型生成函数用于解决 ...
- BZOJ 3771: Triple(生成函数 FFT)
Time Limit: 20 Sec Memory Limit: 64 MBSubmit: 911 Solved: 528[Submit][Status][Discuss] Description ...
- BZOJ 3771: Triple
Description 问所有三/二/一元组可能形成的组合. Sol FFT. 利用生成函数直接FFT一下,然后就是计算,计算的时候简单的容斥一下. 任意三个-3*两个相同的+2*全部相同的+任意两个 ...
- bzoj 3771 Triple——FFT
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3771 把方案作为系数.值作为指数,两项相乘就是系数相乘.指数相加,符合意义. 考虑去重.先自 ...
- bzoj 3771 Triple —— FFT
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3771 令多项式的系数是方案数,次数是值: 设 a(x) 为一个物品的多项式,即 a[w[i] ...
- BZOJ 3771 Triple FFT+容斥原理
解析: 这东西其实就是指数型母函数? 所以刚开始读入的值我们都把它前面的系数置为1. 然后其实就是个多项式乘法了. 最大范围显然是读入的值中的最大值乘三,对于本题的话是12W? 用FFT优化的话,达到 ...
随机推荐
- Java & hashCode作用
首先,想要明白hashCode的作用,你必须要先知道Java中的集合. 总的来说,Java中的集合(Collection)有两类,一类是List,再有一类是Set.你知道它们的区别吗?前者集合内的元素 ...
- 把a文件删除b文件中的相同的行
grep -vxFf b.txt a.txt > newa.txt 更好的方法是 comm - - b.txt a.txt > newa.txt 来自Tool in unix to sub ...
- 转 使用Docker部署 spring-boot maven应用
转自:https://blog.csdn.net/u011699931/article/details/70226504/ 使用Docker部署 spring-boot maven应用 部署过程分为以 ...
- python 将base64字符串还原为图片
今天弄验证码的时候发现,验证码的图片的src竟然是下面的这么一个一串字符串,吓到,好像不可以http请求的,第一次见,就好尴尬,去网上搜索了一下,说是: 这是Data URI scheme. data ...
- Hbase的安装和配置
1,准备好hbase的linux环境下的压缩包,这里hadoop版本为hadoop2.5.0,hbase版本为 2,解压缩这个版本,不选src的,其实两个任一都行 进入到hbase安装包目录,我这里的 ...
- 【第三周】【】cppunit!
coding.net地址:https://coding.net/u/Boxer_ ssh:git@git.coding.net:Boxer_/homework.git https://coding.n ...
- UVA11735_Corner the Queens
题目是这样的,游戏规则,每个人轮流将二维空间上的皇后往下,往左或者往斜下45度的方向移动. 谁第一个移动到0,0的位置就获胜. 题目给定你若干个矩形,求矩形中任取一点且该点必胜的概率有概率. 其实是这 ...
- 【bzoj1502】[NOI2005]月下柠檬树 自适应Simpson积分
题目描述 李哲非常非常喜欢柠檬树,特别是在静静的夜晚,当天空中有一弯明月温柔地照亮地面上的景物时,他必会悠闲地坐在他亲手植下的那棵柠檬树旁,独自思索着人生的哲理.李哲是一个喜爱思考的孩子,当他看到在月 ...
- Django 2.0 学习(15):Web框架
Web框架的本质 对于学习Python的同学,相信对Flask.Django.Web.py等不会陌生,这些都是Python语言的web框架.那么问题来了,web服务器是什么?它和web框架有什么关系? ...
- 分治FFT
目录 分治FFT 目的 算法 代码 分治FFT 目的 解决这样一类式子: \[f[n] = \sum_{i = 0}^{n - 1}f[i]g[n - i]\] 算法 看上去跟普通卷积式子挺像的,但是 ...