1.简介

  MapReduce计算框架是二代hadoop的YARN一部分,能够提供大数据量的平行批处理。MR只提供了基本的计算方法,之所以能够使用在不用的数据格式上包括HBase表上是因为特定格式上的数据读取和写入都实现了各自的inputformat和outputformat,这样MR就通过这两个接口屏蔽了各个数据源的产异性,统一计算框架。本文主要介绍如何让HBase表作为MR计算框架的输入和输出源,并通过实现一个简历二级索引的小例子来介绍。

2. HBase与MR关系

  HBase和MapReduce,这两者并没有直接关系,隶属于不同的项目。这里讲到的MapReduce on HBase是指利用HBase表做为MR计算框架的数据输入源或者输出源源,使得能够利用MR的并行计算能力计算HBase的内部数据。

3. 运行环境

  之前所述,HBase和MapReduce没有直接关系,所以在编程的时候我们需要分别引入MR和HBase包,在运行的时候也要做相关的设置让HBase的包被MR感知到。

在运行HBase相关的MR任务的时候我们可以将HBase相关包和配置文件拷贝到Hadoop运行目录中,如hbase-site.xml 拷贝到$HADOOP_HOME/conf再将HBase jars 拷贝到 $HADOOP_HOME/lib,但是并不推荐这样的做法,因为一会污染hadoop的安装环境,二还需要重启hadoop才能起效。

  所以我们可以按如下的推荐做法来运行MR程序

$ HADOOP_CLASSPATH=`${HBASE_HOME}/bin/hbase classpath` ${HADOOP_HOME}/bin/hadoop jar <your jar> <param .......>

  例如在我环境下我利用如下命令提交HBase自带的样例程序:

[hadoop@xufeng-3 lib]$ HADOOP_CLASSPATH=`/opt/hadoop/hbase/bin/hbase classpath` hadoop jar hbase-server-1.0.0-cdh5.4.2.jar rowcounter usertable

  以上会将/opt/hadoop/hbase/bin/hbase classpath 下的所有文件拷贝的hdfs上以供后续程序运行时候引用,缺点就是可能只能在安装有HBase环境的机器上执行。

4.简单二级索引的实现

  下面以一个简单的二级索引实现为例子讲解HBase MR程序的编写。

  需要注意的是现在HBase包存在两套MR引用包,分别是org.apache.hadoop.hbase.mapredorg.apache.hadoop.hbase.mapreduce。称之为旧API和新API。通常社区推荐的是新API,旧API后续版本有被淘汰的计划。

  所谓基于框架的代码实现之前的博客也有介绍,简单来说就是:

  1. 书写固定的框架代码

  2. 在框架中填充自身业务的代码逻辑

  固定框架代码

    一般的MR程序中Mapper方法是必须的,Reducer方法就根据业务需要吧。

    下属代码中TableMapReduceUtil为了我们提供了极大的便利,她在内部为我们指定了TableInputFormat和TableOutputFormat等一些列的工作。

/**
* 利用MR程序简历HBase二级索引
* @author newbeefeng
*
*/
public class YourAction { /**
* 运行方法
* @param args
* @throws IOException
* @throws ClassNotFoundException
* @throws InterruptedException
*/
public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException {
// 创建配置
Configuration conf = HBaseConfiguration.create(); // 创建job
Job job = Job.getInstance(conf); // 设定job名称
job.setJobName("名称"); // 设定任务类(当前类)
job.setJarByClass(YourAction.class); // 扫描
Scan scan = new Scan();
// 设定caching
scan.setCaching(1000);
// 对于mr程序来说必须设定为false
scan.setCacheBlocks(false); // 利用TableMapReduceUtil初始化mapper
TableMapReduceUtil.initTableMapperJob("数据源表名", scan, YourMapper.class, Text.class, Text.class, job); // 利用TableMapReduceUtil初始化reducer
TableMapReduceUtil.initTableReducerJob("数据输出表名", YourReducer.class, job); // 提交并等待任务运行完毕
boolean b = job.waitForCompletion(true);
if (!b) {
throw new IOException("error with job!");
} } } /**
* 实现具体的mapper类,这个类定义是必须的,因为mr任务可以没有reducer但是一定要有mapper
*
* 此类继承TableMapper,此抽象类帮助我们实现了基本默认实现,用户只要关心具体的业务即可
*
*
* @author newbeefeng
*
*/
class YourMapper extends TableMapper<Text,Text>
{ // 实现具体map业务逻辑
@Override
protected void map(ImmutableBytesWritable key, Result value,
Mapper<ImmutableBytesWritable, Result, Text, Text>.Context context)
throws IOException, InterruptedException {
} } /**
* 实现具体的reducer类
*
* 此类继承TableReducer,此抽象类帮助我们实现了基本默认实现,用户只要关心具体的业务即可
*
*
* @author newbeefeng
*
*/
class YourReducer extends TableReducer<Text, Text, ImmutableBytesWritable>
{ // 实现具体mreduce业务逻辑
@Override
protected void reduce(Text key, Iterable<Text> values,
Reducer<Text, Text, ImmutableBytesWritable, Mutation>.Context context)
throws IOException, InterruptedException { } }

  基于框架代码的简单二级索引的业务实现

/**
* 利用MR程序简历HBase二级索引
* @author newbeefeng
*
*/
public class BatchCreateSecondIndex { /**
* 运行方法
* @param args
* @throws IOException
* @throws ClassNotFoundException
* @throws InterruptedException
*/
public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException {
// 创建配置
Configuration conf = HBaseConfiguration.create(); // 创建job
Job job = Job.getInstance(conf); // 设定job名称
job.setJobName("mapreduce on HBase for create second index!"); // 设定任务类(当前类)
job.setJarByClass(BatchCreateSecondIndex.class); // 扫描
Scan scan = new Scan();
// 设定caching
scan.setCaching(1000);
// 对于mr程序来说必须设定为false
scan.setCacheBlocks(false); // 利用TableMapReduceUtil初始化mapper
TableMapReduceUtil.initTableMapperJob("mr_secondindex_resouce", scan, IndexMapper.class, Text.class, Text.class, job); // 利用TableMapReduceUtil初始化reducer
TableMapReduceUtil.initTableReducerJob("mr_secondindex_result", IndexReducer.class, job); // 提交并等待任务运行完毕
boolean b = job.waitForCompletion(true);
if (!b) {
throw new IOException("error with job!");
} } } /**
* 实现具体的mapper类,这个类定义是必须的,因为mr任务可以没有reducer但是一定要有mapper
*
* 此类继承TableMapper,此抽象类帮助我们实现了基本默认实现,用户只要关心具体的业务即可
*
*
* @author newbeefeng
*
*/
class IndexMapper extends TableMapper<Text,Text>
{ // 实现具体map业务逻辑
@Override
protected void map(ImmutableBytesWritable key, Result value,
Mapper<ImmutableBytesWritable, Result, Text, Text>.Context context)
throws IOException, InterruptedException {
Text k = new Text(Bytes.toString(key.get()));
Text v = new Text(Bytes.toString(value.getValue(Bytes.toBytes("f"), Bytes.toBytes("age"))));
// 这里其实是直接将每行数据给了reduce,不做任何处理,其实这个二级索引完全可以在map阶段完成全部工作
// 但是为了演示需要,还是写了reduce
System.out.println("k = " + k);
System.out.println("v = " + v);
context.write(k, v);
} } /**
* 实现具体的reducer类
*
* 此类继承TableReducer,此抽象类帮助我们实现了基本默认实现,用户只要关心具体的业务即可
*
*
* @author newbeefeng
*
*/
class IndexReducer extends TableReducer<Text, Text, ImmutableBytesWritable>
{ // 实现具体mreduce业务逻辑
@Override
protected void reduce(Text key, Iterable<Text> values,
Reducer<Text, Text, ImmutableBytesWritable, Mutation>.Context context)
throws IOException, InterruptedException {
Text value = null; // 根据map逻辑。values中也只会有一个数据
for(Text text : values)
{
value = text;
} // 构造put将数据写入当job中指定的表中
Put put = new Put(Bytes.toBytes(key.toString() + "|" + value.toString()));
put.addColumn(Bytes.toBytes("f"), Bytes.toBytes("age"), Bytes.toBytes(value.toString()));
System.out.println(put); // 执行写入
context.write(null, put);
} }

5. 测试

  将上述工程打包后,放入HBase环境机器上执行:

HADOOP_CLASSPATH=`/opt/hadoop/hbase/bin/hbase classpath` hadoop jar Test-MapreduceOnHBase.jar cn.com.newbee.feng.mr.BatchCreateSecondIndex

  测试结果:现在索引表中value列已经在rowkey中:

hbase(main):002:0> scan 'mr_secondindex_resouce'
ROW COLUMN+CELL
lisi column=f:age, timestamp=1469887264781, value=25
wangwu column=f:age, timestamp=1469887270347, value=30
zhangsan column=f:age, timestamp=1469887260046, value=20
zhaoliu column=f:age, timestamp=1469887275702, value=35
4 row(s) in 0.3490 seconds hbase(main):003:0> scan 'mr_secondindex_result'
ROW COLUMN+CELL
lisi|25 column=f:age, timestamp=1469890284944, value=25
wangwu|30 column=f:age, timestamp=1469890284944, value=30
zhangsan|20 column=f:age, timestamp=1469890284944, value=20
zhaoliu|35 column=f:age, timestamp=1469890284944, value=35
4 row(s) in 0.0280 seconds

  

6. 总结

  MapReduce on HBase 内部其实还是使用了HBase客户端插入的方式将数据在MAP阶段或者在reduce阶段将数据通过API插入到目标表中。HBase为了配合MR计算框架实现了TableInputFormat和TableOutputFormat。并为开发者提供了便利的API去操作如TableMapReduceUtil以及TableMapper和TableReducer等,用户只要将注意力集中在具体的map和reduce业务上即可。

7.参考:

    https://hbase.apache.org/book.html#mapreduce

8.代码:

  下载地址:https://github.com/xufeng79x/MapreduceOnHBaseTest

  




[How to] MapReduce on HBase ----- 简单二级索引的实现的更多相关文章

  1. HBase建立二级索引的一些解决方式

    HBase的一级索引就是rowkey,我们仅仅能通过rowkey进行检索. 假设我们相对hbase里面列族的列列进行一些组合查询.就须要採用HBase的二级索引方案来进行多条件的查询. 常见的二级索引 ...

  2. HBase的二级索引,以及phoenix的安装(需再做一次)

    一:HBase的二级索引 1.讲解 uid+ts 11111_20161126111111:查询某一uid的某一个时间段内的数据 查询某一时间段内所有用户的数据:按照时间 索引表 rowkey:ts+ ...

  3. 085 HBase的二级索引,以及phoenix的安装(需再做一次)

    一:问题由来 1.举例 有A列与B列,分别是年龄与姓名. 如果想通过年龄查询姓名. 正常的检索是通过rowkey进行检索. 根据年龄查询rowkey,然后根据rowkey进行查找姓名. 这样的效率不高 ...

  4. 利用Phoenix为HBase创建二级索引

    为什么需要Secondary Index 对于Hbase而言,如果想精确地定位到某行记录,唯一的办法是通过rowkey来查询.如果不通过rowkey来查找数据,就必须逐行地比较每一列的值,即全表扫瞄. ...

  5. hbase构建二级索引解决方案

    关注公众号:大数据技术派,回复"资料",领取1024G资料. 1 为什么需要二级索引 HBase的一级索引就是rowkey,我们仅仅能通过rowkey进行检索.假设我们相对Hbas ...

  6. 基于Solr实现HBase的二级索引

    文章来源:http://www.open-open.com/lib/view/open1421501717312.html 实现目的: 由于hbase基于行健有序存储,在查询时使用行健十分高效,然后想 ...

  7. hbase coprocessor 二级索引

    Coprocessor方式二级索引 1. Coprocessor提供了一种机制可以让开发者直接在RegionServer上运行自定义代码来管理数据.通常我们使用get或者scan来从Hbase中获取数 ...

  8. HBase的二级索引

    使用HBase存储中国好声音数据的案例,业务描述如下: 为了能高效的查询到我们需要的数据,我们在RowKey的设计上下了不少功夫,因为过滤RowKey或者根据RowKey查询数据的效率是最高的,我们的 ...

  9. HBase 二级索引与Join

    二级索引与索引Join是Online业务系统要求存储引擎提供的基本特性.RDBMS支持得比较好,NOSQL阵营也在摸索着符合自身特点的最佳解决方案. 这篇文章会以HBase做为对象来探讨如何基于Hba ...

随机推荐

  1. 【Java】JAVA开发人员常见环境工具安装

    1.安装配置JDK1.7:jdk-7u45-windows-x64.exe,环境变量配置:JAVA_HOME---[F:\1024\jdk1.7],CLASSPATH---[.;%JAVA_HOME% ...

  2. Luogu4897 【模板】最小割树

    没事干写一发模板. #include<iostream> #include<cstdio> #include<cmath> #include<cstdlib& ...

  3. Windows与VMware中的CentOS系统互通访问

    [步骤01]设置 CentOS 虚拟机-网络适配器为“桥接模式(直接连接物理网络),复制物理网络连接状态” [步骤02]配置虚拟网卡 [步骤03]配置 CentOS 网络 [步骤04]测试 windo ...

  4. Notepad++查找和替换空行/空格/换行

    Notepad++查找和替换支持正则表达式,功能很强大,但比较复杂因此暂不研究 Notepad++使用正则表达式查找,首先需要勾选查找/替换窗口左下部的“正则表达式(E)”\r\n表示换行,其中\r表 ...

  5. 🔺 Garbage Remembering Exam UVA - 11637()

    题目大意:给你N个单词,有两种方法随机排列,一种随机排成一行,另一种随机排成一圈,当两个单词之间的距离在两种排列中都严格小于K时,则这两个单词构成无效单词,问无效单词的期望. 解题思路:首先对于一排单 ...

  6. 【BZOJ4522】密匙破解(Pollard_rho)

    [BZOJ4522]密匙破解(Pollard_rho) 题面 BZOJ 洛谷 题解 还是\(Pollard\_rho\)的模板题. 呜... #include<iostream> #inc ...

  7. Closest Number in Sorted Array

    Given a target number and an integer array A sorted in ascending order, find the index i in A such t ...

  8. Mac下安装MacProt,并GNU autotools的安装和使用 autoconf,automake

    1 MacPort的下载:http://www.macports.org/install.php, 需要安装xCode支持macport 2 安装MacPorts 与其他Mac的软件的安装方式相同,挂 ...

  9. 70路小报:用PV和UV作为网站衡量指标已经过时

    方法]投资人呼吁:PV和UV不应该再作为产品衡量指标 风险投资机构Andreessen Horowitz近日一直反对再用传统的网站衡量指标去评价互联网产品,比如PV和UV,甚至包括应用的下载量. 他们 ...

  10. pasty公式

    sklearn实战-乳腺癌细胞数据挖掘(博主亲自录制视频) https://study.163.com/course/introduction.htm?courseId=1005269003& ...