Brackets
Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 7795   Accepted: 4136

Description

We give the following inductive definition of a “regular brackets” sequence:

  • the empty sequence is a regular brackets sequence,
  • if s is a regular brackets sequence, then (s) and [s] are regular brackets sequences, and
  • if a and b are regular brackets sequences, then ab is a regular brackets sequence.
  • no other sequence is a regular brackets sequence

For instance, all of the following character sequences are regular brackets sequences:

(), [], (()), ()[], ()[()]

while the following character sequences are not:

(, ], )(, ([)], ([(]

Given a brackets sequence of characters a1a2 … an, your goal is to find the length of the longest regular brackets sequence that is a subsequence of s. That is, you wish to find the largest m such that for indices i1i2, …, im where 1 ≤ i1 < i2 < … < im ≤ nai1ai2 … aim is a regular brackets sequence.

Given the initial sequence ([([]])], the longest regular brackets subsequence is [([])].

Input

The input test file will contain multiple test cases. Each input test case consists of a single line containing only the characters ()[, and ]; each input test will have length between 1 and 100, inclusive. The end-of-file is marked by a line containing the word “end” and should not be processed.

Output

For each input case, the program should print the length of the longest possible regular brackets subsequence on a single line.

Sample Input

((()))
()()()
([]])
)[)(
([][][)
end

Sample Output

6
6
4
0
6

Source

 
题解:
f[i][j]表示i到j的最大括号匹配数
 
#include <iostream>
#include<cstdio>
#include<cstring>
#include<map>
#include<set>
#include<queue>
#include<vector>
#include<deque>
#include<algorithm>
#include<string>
#include<stack>
#include<cmath>
using namespace std;
char ch[];
int dp[][];
int n;
bool ok(int x,int y)
{
if (ch[x]=='(' && ch[y]==')') return ;
if (ch[x]=='[' && ch[y]==']') return ;
return ;
} int main()
{
while(~scanf("%s",&ch))
{
if (ch[]=='e') break;
n=strlen(ch);
memset(dp,,sizeof(dp));
// for(int i=0;i<n;i++)
// for(int j=i+1;j<n;j++) 正就是不对的
for(int i=n-;i>=;i--)
for(int j=i+;j<n;j++)
{
if (ok(i,j)) dp[i][j]=max(dp[i][j],dp[i+][j-]+);
for(int k=i;k<=j;k++)
dp[i][j]=max(dp[i][j],dp[i][k]+dp[k][j]); }
printf("%d\n",dp[][n-]); }
return ;
}

Poj 2955 brackets(区间dp)的更多相关文章

  1. HOJ 1936&POJ 2955 Brackets(区间DP)

    Brackets My Tags (Edit) Source : Stanford ACM Programming Contest 2004 Time limit : 1 sec Memory lim ...

  2. poj 2955 Brackets (区间dp基础题)

    We give the following inductive definition of a “regular brackets” sequence: the empty sequence is a ...

  3. poj 2955"Brackets"(区间DP)

    传送门 https://www.cnblogs.com/violet-acmer/p/9852294.html 题意: 给你一个只由 '(' , ')' , '[' , ']' 组成的字符串s[ ], ...

  4. poj 2955 Brackets (区间dp 括号匹配)

    Description We give the following inductive definition of a “regular brackets” sequence: the empty s ...

  5. POJ 2955 Brackets 区间DP 入门

    dp[i][j]代表i->j区间内最多的合法括号数 if(s[i]=='('&&s[j]==')'||s[i]=='['&&s[j]==']') dp[i][j] ...

  6. POJ 2955 Brackets(区间DP)

    题目链接 #include <iostream> #include <cstdio> #include <cstring> #include <vector& ...

  7. POJ 2955 Brackets 区间DP 最大括号匹配

    http://blog.csdn.net/libin56842/article/details/9673239 http://www.cnblogs.com/ACMan/archive/2012/08 ...

  8. POJ 2995 Brackets 区间DP

    POJ 2995 Brackets 区间DP 题意 大意:给你一个字符串,询问这个字符串满足要求的有多少,()和[]都是一个匹配.需要注意的是这里的匹配规则. 解题思路 区间DP,开始自己没想到是区间 ...

  9. A - Brackets POJ - 2955 (区间DP模板题)

    题目链接:https://cn.vjudge.net/contest/276243#problem/A 题目大意:给你一个字符串,让你求出字符串的最长匹配子串. 具体思路:三个for循环暴力,对于一个 ...

  10. POJ 2955 Brackets 区间合并

    输出一个串里面能匹配的括号数 状态转移方程: if(s[i]=='('&&s[j]==')'||s[i]=='['&&s[j]==']')             dp ...

随机推荐

  1. .NET BETWEEN方法

    Between 值范围比较 可以判断一个值是否落在区间范围值中. public static bool Between<T>(this T me, T lower, T upper) wh ...

  2. 获取浏览器版本型号(C#)

    private string GetClientBrowserVersions() { string browserVersions = string.Empty; HttpBrowserCapabi ...

  3. 负载均衡技术在CDN中发挥着重要作用

    转载地址:http://www.qicaispace.com/gonggao/server/page01/info07.asp CDN是一个经策略性部署的整体系统,能够帮助用户解决分布式存储.负载均衡 ...

  4. FileSystemWatcher监听文件是否有被修改

    作用:监听文件系统更改通知,并在目录或目录中的文件更改时引发事件. 需求:监听特定文件是否修改,然后做出相应的操作. 方法: ①利用一个线程,一直去查找该指定的文件是否有被修改,如果修改则操作特定步骤 ...

  5. OpenStack之Keystone模块

    一.Keystone介绍 OpenStack Identity(Keystone)服务为运行OpenStack Compute上的OpenStack云提供了认证和管理用户.帐号和角色信息服务,并为Op ...

  6. NOIP2019前的训练记录

    \(April\):肛多项式,学\(FWT\)一个小时无果后背了六个公式,看来证明又得咕很久了

  7. 20145313张雪纯 《Java程序设计》第1周学习总结

    20145313 <Java程序设计>第1周学习总结 教材学习内容总结 java有三大平台,分别为Java SE(J2SE).Java EE(J2EE).Java ME(J2 ME). J ...

  8. 20145331 《Java程序设计》第6周学习总结

              20145331 <Java程序设计>第6周学习总结 教材学习内容总结 第十章 输入/输出 10.1.1串流 •Java将输入/输出抽象化为串流,数据有来源及目的地,衔 ...

  9. Exynos4412 IIC总线驱动开发(一)—— IIC 基础概念及驱动架构分析

    关于Exynos4412 IIC 裸机开发请看 :Exynos4412 裸机开发 —— IIC总线 ,下面回顾下 IIC 基础概念 一.IIC 基础概念 IIC(Inter-Integrated Ci ...

  10. Elasticsearch之分词器的作用

    前提 什么是倒排索引? Analyzer(分词器)的作用是把一段文本中的词按一定规则进行切分.对应的是Analyzer类,这是一个抽象类,切分词的具体规则是由子类实现的,所以对于不同的语言,要用不同的 ...