版权声明:欢迎关注我的博客。本文为博主【炒饭君】原创文章,未经博主同意不得转载 https://blog.csdn.net/a1061747415/article/details/25471349

Problem A : Counting Squares

pid=1264" rel="nofollow">From:HDU, 1264

Problem Description
Your input is a series of rectangles, one per line. Each rectangle is specified as two points(X,Y) that specify the opposite corners of a rectangle. All coordinates will be integers in the range 0 to 100. For example, the line
5 8 7 10
specifies the rectangle who's corners are(5,8),(7,8),(7,10),(5,10).
If drawn on graph paper, that rectangle would cover four squares. Your job is to count the number of unit(i.e.,1*1) squares that are covered by any one of the rectangles given as input. Any square covered by more than one rectangle should only be counted once.
 
Input
The input format is a series of lines, each containing 4 integers. Four -1's are used to separate problems, and four -2's are used to end the last problem. Otherwise, the numbers are the x-ycoordinates of two points that are opposite corners of
a rectangle.
 
Output
Your output should be the number of squares covered by each set of rectangles. Each number should be printed on a separate line.
 
Sample Input

5 8 7 10
6 9 7 8
6 8 8 11
-1 -1 -1 -1
0 0 100 100
50 75 12 90
39 42 57 73
-2 -2 -2 -2
 
Sample Output

8
10000
 
Source
 
Recommend
JGShining

题目大意:

 给定你一些矩形左下右上角坐标点。或者左上右下坐标点。求这些矩形的面积并。

解题思路:

利用线段树扫描线的知识。此题不须要离散化。

#include <iostream>
#include <cmath>
#include <cstdio>
#include <algorithm>
#include <vector>
using namespace std; struct node{
int x,y1,y2,c;
node(int x0=0,int y10=0,int y20=0,int c0=0){
x=x0;y1=y10;y2=y20;c=c0;
}
friend bool operator < (node a,node b){
if(a.x!=b.x) return a.x<b.x;
else if(a.y1!=b.y1) return a.y1<b.y1;
else if(a.y2!=b.y2) return a.y2<b.y2;
else return a.c>b.c;
}
}; const int maxh=110; struct tree{
int l,r,c,lz;
}a[maxh*4]; vector <node> v; bool input(){
int a,b,c,d;
v.clear();
while(scanf("%d%d%d%d",&a,&b,&c,&d)!=EOF){
if(a==-1 && b==-1 && c==-1 && d==-1) return true;
if(a==-2 && b==-2 && c==-2 && d==-2) return false;
v.push_back(node( min(a,c), min(b,d) , max(b,d) ,1));
v.push_back(node( max(a,c), min(b,d) , max(b,d) ,-1));
}
} void build(int l,int r,int k){
a[k].l=l;
a[k].r=r;
a[k].c=0;
a[k].lz=0;
if(l+1<r){
int mid=(l+r)/2;
build(l,mid,2*k);
build(mid,r,2*k+1);
}
} void pushdown(int k){
if(a[k].lz!=0 && a[k].l+1<a[k].r ){
a[2*k].lz+=a[k].lz;
a[2*k+1].lz+=a[k].lz;
a[2*k].c+=a[k].lz;
a[2*k+1].c+=a[k].lz;
a[k].lz=0;
}
} void insert(int l,int r,int k,int c){
if(l<=a[k].l && a[k].r<=r){
a[k].lz+=c;
a[k].c+=c;
}else{
pushdown(k);
int mid=(a[k].l+a[k].r)/2;
if(r<=mid) insert(l,r,2*k,c);
else if(l>=mid) insert(l,r,2*k+1,c);
else{
insert(l,mid,2*k,c);
insert(mid,r,2*k+1,c);
}
}
} int query(int l,int r,int k){
pushdown(k);
if(l<=a[k].l && a[k].r<=r){
if(a[k].c>0) return r-l;
else{
if(a[k].l+1==a[k].r) return 0;
else {
int mid=(a[k].l+a[k].r)/2;
return query(l,mid,2*k) + query(mid,r,2*k+1) ;
}
}
}else{
int mid=(a[k].l+a[k].r)/2;
if(r<=mid) return query(l,r,2*k);
else if(l>=mid) return query(l,r,2*k+1);
else{
return query(l,mid,2*k) + query(mid,r,2*k+1) ;
}
}
} void solve(){
build(0,maxh,1);
sort(v.begin(),v.end());
insert(v[0].y1,v[0].y2,1,v[0].c);
int ans=0;
for(int i=1;i<v.size();i++){
//cout<<v[i].x-v[i-1].x<<" "<<query(0,maxh,1)<<endl;
ans+=(v[i].x-v[i-1].x)*query(0,maxh,1);
insert(v[i].y1,v[i].y2,1,v[i].c);
}
cout<<ans<<endl;
} int main(){
while(input()){
solve();
}
solve();
return 0;
}


HDU 1264 Counting Squares (线段树-扫描线-矩形面积并)的更多相关文章

  1. hdu 1828 Picture(线段树扫描线矩形周长并)

    线段树扫描线矩形周长并 #include <iostream> #include <cstdio> #include <algorithm> #include &l ...

  2. poj 3277 City Horizon (线段树 扫描线 矩形面积并)

    题目链接 题意: 给一些矩形,给出长和高,其中长是用区间的形式给出的,有些区间有重叠,最后求所有矩形的面积. 分析: 给的区间的范围很大,所以需要离散化,还需要把y坐标去重,不过我试了一下不去重 也不 ...

  3. HDU - 1255 覆盖的面积(线段树求矩形面积交 扫描线+离散化)

    链接:线段树求矩形面积并 扫描线+离散化 1.给定平面上若干矩形,求出被这些矩形覆盖过至少两次的区域的面积. 2.看完线段树求矩形面积并 的方法后,再看这题,求的是矩形面积交,类同. 求面积时,用被覆 ...

  4. HDU 1828“Picture”(线段树+扫描线求矩形周长并)

    传送门 •参考资料 [1]:算法总结:[线段树+扫描线]&矩形覆盖求面积/周长问题(HDU 1542/HDU 1828) •题意 给你 n 个矩形,求矩形并的周长: •题解1(两次扫描线) 周 ...

  5. hdu1828 Picture(线段树+扫描线+矩形周长)

    看这篇博客前可以看一下扫描线求面积:线段树扫描线(一.Atlantis HDU - 1542(覆盖面积) 二.覆盖的面积 HDU - 1255(重叠两次的面积))  解法一·:两次扫描线 如图我们可以 ...

  6. HDU 6096 String 排序 + 线段树 + 扫描线

    String Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 524288/524288 K (Java/Others) Problem De ...

  7. hdu1542 Atlantis 线段树--扫描线求面积并

    There are several ancient Greek texts that contain descriptions of the fabled island Atlantis. Some ...

  8. 【hdu1542】线段树求矩形面积并

    分割线内容转载自http://hzwer.com/879.html ------------------------------------------------------------------ ...

  9. POJ 1151 Atlantis 线段树求矩形面积并 方法详解

    第一次做线段树扫描法的题,网搜各种讲解,发现大多数都讲得太过简洁,不是太容易理解.所以自己打算写一个详细的.看完必会o(∩_∩)o 顾名思义,扫描法就是用一根想象中的线扫过所有矩形,在写代码的过程中, ...

随机推荐

  1. Java多态性的理解2

    多态的基础理解请参考:http://www.cnblogs.com/liujinhong/p/6003144.html Java的多态一直是我们理解的一个难点.在读过<深入理解Java虚拟机&g ...

  2. HDU 4745 Two Rabbits ★(最长回文子序列:区间DP)

    题意 在一个圆环串中找一个最长的子序列,并且这个子序列是轴对称的. 思路 从对称轴上一点出发,向两个方向运动可以正好满足题意,并且可以证明如果抽选择的子环不是对称的话,其一定不是最长的. 倍长原序列, ...

  3. C++:哈希

    1.基本概念 哈希一般用来快速查找,通过hash函数将输入的键值(key)映射到某一个地址,然后就可以获得该地址的内容. 同样,如果要储存一对值(键值和数据),则也是通过hash函数获得地址来存入.见 ...

  4. LA3029

    题解: 一个类似尺取法的算法 代码: #include<cstdio> #include<algorithm> using namespace std; ; int T,n,m ...

  5. vue.js 源代码学习笔记 ----- instance inject

    /* @flow */ import { hasSymbol } from 'core/util/env' import { warn } from '../util/index' import { ...

  6. GPU编程自学1 —— 引言

    深度学习的兴起,使得多线程以及GPU编程逐渐成为算法工程师无法规避的问题.这里主要记录自己的GPU自学历程. 目录 <GPU编程自学1 -- 引言> <GPU编程自学2 -- CUD ...

  7. 图像和流媒体 -- Sapera 安装遇到的问题

    一.下载安装包 参看:Genie Nano M1930-NIR 点击软件及例程下载 二.安装遇到的问题 (1)Installation directory must be on a local har ...

  8. This is very likely to create a memory leak. Stack trace of thread

    1.错误描述 警告: The web application [cmp] appears to have started a thread named [Abandoned connection cl ...

  9. Xcode 在读写上提速100倍

  10. Swift中的本地化实现

    1. 确保localization中添加了多语言2. 添加localisable.strings文件 3.选择这个文件,勾选多语言即可4.打开localisable.strings文件,添加一些测试字 ...