Hadoop combiners are a very powerful tool to speed up our computations. We already saw what a combiner is in a previous post and we also have seen another form of optimization inthis post. Let's put all together to get the broader idea. 
The combiners are optimizations that can be used with Hadoop to make a local-reduction: the idea is to reduce the key-value pairs directly on the mapper, to avoid transmitting all of them to the reducers. 
Let's get back to the Top20 example from the previous post, which finds the top 20 words most used in a text. The Hadoop output of this job is shown below:

...
Map input records=4239
Map output records=37817
Map output bytes=359621
Input split bytes=118
Combine input records=0
Combine output records=0
Reduce input groups=4987
Reduce shuffle bytes=435261
Reduce input records=37817
Reduce output records=20
...

As we can see in the lines highlighted in bold, without a combiner we have 4239 lines in input for the mappers and 37817 key-value pairs emitted (the number of different words of the text). Having defined no combiner, the input and output records of combiners are 0, and so the input records for the reducers are exactly those emitted by the mappers, 37817.

Let's define a simple combiner:

    public static class WordCountCombiner extends Reducer<text, intwritable,="" text,="" intwritable=""> {

        @Override
public void reduce(Text key, Iterable values, Context context) throws IOException, InterruptedException { // computes the number of occurrences of a single word
int sum = 0;
for (IntWritable val : values) {
sum += val.get();
}
context.write(key, new IntWritable(sum));
}
}

As we can see, the code has the same logic of the reducer, since its target is the same: reducing key/value pairs. 
Running the job having set the combiner gives us this result:

...
Map input records=4239
Map output records=37817
Map output bytes=359621
Input split bytes=116
Combine input records=37817
Combine output records=20

Reduce input groups=20
Reduce shuffle bytes=194
Reduce input records=20
Reduce output records=20
...

Looking at the output from Hadoop, we see that now the combiner has 37817 input records: this means that the records emitted from the mappers were all sent to the combiners; the result of the combiners is of 20 records emitted, which is the number of records received by the reducers. 
Wow, that's a great result! We avoided the transmission of a lot of data: just 20 records instead of 37817 that we had without the combiner.

But there's a big disadvantage using combiners: since is an optimization, Hadoop does not guarantee their execution. So, what can we do to ensure a reduction at the mapper-level? Simple: we can put the logic of the reducer inside the mapper!

This is exactly what we've done in the mapper of this post. This pattern is called "in-mapper combiner". The reduce part is started at mapper level, so that the key-value pairs sent to the reducers are minimized. 
Let's see Hadoop output with this pattern (in-mapper combiner and without the stand-alone combiner):

...
Map input records=4239
Map output records=4987
Map output bytes=61522
Input split bytes=118
Combine input records=0
Combine output records=0

Reduce input groups=4987
Reduce shuffle bytes=71502
Reduce input records=4987
Reduce output records=20...

Compared to the execution of the other mapper (without combining), this mapper outputs only 4987 records instead of the 37817 that are emitted to the reducers. A big reduction, even if not as big as the one obtained with the stand-alone combiner. 
And what happens if we decide to couple the in-mapper combiner pattern and the stand-alone combiner? Well, we've got the best of the two:

...
Map input records=4239
Map output records=4987
Map output bytes=61522
Input split bytes=116
Combine input records=4987
Combine output records=20

Reduce input groups=20
Reduce shuffle bytes=194
Reduce input records=20
Reduce output records=20
...

In this last case, we have the best performance because we're emitting from the mapper a reduced number of records, the combiners (if it's executed) reduce even more the size of the data to be emitted. The only downside of this approach I can think of is that it takes a lot of time to be coded.

from: http://andreaiacono.blogspot.com/2014/05/more-about-hadoop-combiners.html

更为详细的介绍Hadoop combiners-More about Hadoop combiners的更多相关文章

  1. 原来你是这样的BERT,i了i了! —— 超详细BERT介绍(一)BERT主模型的结构及其组件

    原来你是这样的BERT,i了i了! -- 超详细BERT介绍(一)BERT主模型的结构及其组件 BERT(Bidirectional Encoder Representations from Tran ...

  2. Window VNC远程控制LINUX:VNC详细配置介绍

    Window VNC远程控制LINUX:VNC详细配置介绍 //---------------------------------------vnc linux下的详细配置 1.VNC的启动/停止/重 ...

  3. Hadoop介绍及最新稳定版Hadoop 2.4.1下载地址及单节点安装

     Hadoop介绍 Hadoop是一个能对大量数据进行分布式处理的软件框架.其基本的组成包括hdfs分布式文件系统和可以运行在hdfs文件系统上的MapReduce编程模型,以及基于hdfs和MapR ...

  4. ThinkPHP 自动创建数据、自动验证、自动完成详细例子介绍(十九)

    原文:ThinkPHP 自动创建数据.自动验证.自动完成详细例子介绍(十九) 1:自动创建数据 //$name=$_POST['name']; //$password=$_POST['password ...

  5. hadoop学习第一天-hadoop初步环境搭建&伪分布式计算配置(详细)

    一.虚拟机环境搭建 我们用的虚拟机为vmware,Linux镜像为centOS6.5. vmware安装 安装没什么多说的,一路下一步,但是在新建虚拟机的时候有两个地方需要注意: 1.分配处理器1个就 ...

  6. [原]Redis详细配置介绍

    Redis详细配置介绍 # redis 配置文件示例 # 当你需要为某个配置项指定内存大小的时候,必须要带上单位, # 通常的格式就是 1k 5gb 4m 等酱紫: # # 1k => 1000 ...

  7. 更为详细的Txtsetup.sif文件解释

    更为详细的Txtsetup.sif文件解释;代码页定义, 以免文本安装模式下无法正常显示简体中文 (以下基本都是跟简体中文相关的, 不同语言版本的 Windows, 此处定义也不同)[nls]Ansi ...

  8. 详细版在虚拟机安装和使用hadoop分布式集群

    集群模式: 一台master 192.168.85.2 一台slave  192.168.85.3 jdk jdk1.8.0_74(版本不重要,看喜欢) hadoop版本 2.7.2(版本不重要,2. ...

  9. Hadoop(三) HADOOP常用命令参数介绍

    -help 功能:输出这个命令参数手册 -ls                  功能:显示目录信息 示例: hadoop fs -ls hdfs://hadoop-server01:9000/ 备注 ...

随机推荐

  1. Jmeter------将JDBC Request的查询结果作为另一个接口的请求参数

    一.前言 jmeter已配置连接成功数据库,不会的可查看:https://www.cnblogs.com/syw20170419/p/9832402.html 二.需求 将JDBC Request的r ...

  2. git的使用总结【干货·转载】

    源文地址:https://juejin.im/post/5a54386af265da3e3b7a6317 摘抄: 版本树 / graph / network 干净简洁清晰 提交信息明确 易维护易读 举 ...

  3. loadrunner场景执行出现:Failed to Initialize. Reason: TimeOut

      问题1: Failed to Initialize. Reason: TimeOut LoadRunner的异常原因(Failed to Initialize. Reason: TimeOut) ...

  4. Could not apply the stored configuration for monitors

    在用户目录下$user.home/.config/monitors.xml,要解决上面的问题,最简单的办法就是删除这个monitors.xml文件,重启一下电脑

  5. scrapy抓取拉勾网职位信息(七)——数据存储(MongoDB,Mysql,本地CSV)

    上一篇完成了随机UA和随机代理的设置,让爬虫能更稳定的运行,本篇将爬取好的数据进行存储,包括本地文件,关系型数据库(以Mysql为例),非关系型数据库(以MongoDB为例). 实际上我们在编写爬虫r ...

  6. 深入理解Java引用类型

    深入理解Java引用类型 在Java中类型可分为两大类:值类型与引用类型.值类型就是基本数据类型(如int ,double 等),而引用类型,是指除了基本的变量类型之外的所有类型(如通过 class ...

  7. 对java前后端分离的理解

    到目前为止,身为一个java后端开发人员的我, 在工作期间,无非就是ui设计页面,前端开发html,之后将做好的页面交给我,我负责后台逻辑一件html的页面渲染. 好好滴一个后台开发人员,莫名其妙的做 ...

  8. ajax个人总结

    ajax是什么? AJAX = Asynchronous JavaScript and XML(异步的 JavaScript 和 XML). AJAX 不是新的编程语言,而是一种使用现有标准的新方法. ...

  9. socket的使用二

    基于UDP协议的socket udp是无链接的,先启动哪一端都不会报错 简单使用 server端 import socket udp_sk = socket.socket(type=socket.SO ...

  10. hdu 3089 (快速约瑟夫环)

    Josephus again Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)To ...