更为详细的介绍Hadoop combiners-More about Hadoop combiners
Hadoop combiners are a very powerful tool to speed up our computations. We already saw what a combiner is in a previous post and we also have seen another form of optimization inthis post. Let's put all together to get the broader idea.
The combiners are optimizations that can be used with Hadoop to make a local-reduction: the idea is to reduce the key-value pairs directly on the mapper, to avoid transmitting all of them to the reducers.
Let's get back to the Top20 example from the previous post, which finds the top 20 words most used in a text. The Hadoop output of this job is shown below:
...
Map input records=4239
Map output records=37817
Map output bytes=359621
Input split bytes=118
Combine input records=0
Combine output records=0
Reduce input groups=4987
Reduce shuffle bytes=435261
Reduce input records=37817
Reduce output records=20
...
As we can see in the lines highlighted in bold, without a combiner we have 4239 lines in input for the mappers and 37817 key-value pairs emitted (the number of different words of the text). Having defined no combiner, the input and output records of combiners are 0, and so the input records for the reducers are exactly those emitted by the mappers, 37817.
Let's define a simple combiner:
public static class WordCountCombiner extends Reducer<text, intwritable,="" text,="" intwritable=""> { @Override
public void reduce(Text key, Iterable values, Context context) throws IOException, InterruptedException { // computes the number of occurrences of a single word
int sum = 0;
for (IntWritable val : values) {
sum += val.get();
}
context.write(key, new IntWritable(sum));
}
}
As we can see, the code has the same logic of the reducer, since its target is the same: reducing key/value pairs.
Running the job having set the combiner gives us this result:
...
Map input records=4239
Map output records=37817
Map output bytes=359621
Input split bytes=116
Combine input records=37817
Combine output records=20
Reduce input groups=20
Reduce shuffle bytes=194
Reduce input records=20
Reduce output records=20
...
Looking at the output from Hadoop, we see that now the combiner has 37817 input records: this means that the records emitted from the mappers were all sent to the combiners; the result of the combiners is of 20 records emitted, which is the number of records received by the reducers.
Wow, that's a great result! We avoided the transmission of a lot of data: just 20 records instead of 37817 that we had without the combiner.
But there's a big disadvantage using combiners: since is an optimization, Hadoop does not guarantee their execution. So, what can we do to ensure a reduction at the mapper-level? Simple: we can put the logic of the reducer inside the mapper!
This is exactly what we've done in the mapper of this post. This pattern is called "in-mapper combiner". The reduce part is started at mapper level, so that the key-value pairs sent to the reducers are minimized.
Let's see Hadoop output with this pattern (in-mapper combiner and without the stand-alone combiner):
...
Map input records=4239
Map output records=4987
Map output bytes=61522
Input split bytes=118
Combine input records=0
Combine output records=0
Reduce input groups=4987
Reduce shuffle bytes=71502
Reduce input records=4987
Reduce output records=20...
Compared to the execution of the other mapper (without combining), this mapper outputs only 4987 records instead of the 37817 that are emitted to the reducers. A big reduction, even if not as big as the one obtained with the stand-alone combiner.
And what happens if we decide to couple the in-mapper combiner pattern and the stand-alone combiner? Well, we've got the best of the two:
...
Map input records=4239
Map output records=4987
Map output bytes=61522
Input split bytes=116
Combine input records=4987
Combine output records=20
Reduce input groups=20
Reduce shuffle bytes=194
Reduce input records=20
Reduce output records=20
...
In this last case, we have the best performance because we're emitting from the mapper a reduced number of records, the combiners (if it's executed) reduce even more the size of the data to be emitted. The only downside of this approach I can think of is that it takes a lot of time to be coded.
from: http://andreaiacono.blogspot.com/2014/05/more-about-hadoop-combiners.html
更为详细的介绍Hadoop combiners-More about Hadoop combiners的更多相关文章
- 原来你是这样的BERT,i了i了! —— 超详细BERT介绍(一)BERT主模型的结构及其组件
原来你是这样的BERT,i了i了! -- 超详细BERT介绍(一)BERT主模型的结构及其组件 BERT(Bidirectional Encoder Representations from Tran ...
- Window VNC远程控制LINUX:VNC详细配置介绍
Window VNC远程控制LINUX:VNC详细配置介绍 //---------------------------------------vnc linux下的详细配置 1.VNC的启动/停止/重 ...
- Hadoop介绍及最新稳定版Hadoop 2.4.1下载地址及单节点安装
Hadoop介绍 Hadoop是一个能对大量数据进行分布式处理的软件框架.其基本的组成包括hdfs分布式文件系统和可以运行在hdfs文件系统上的MapReduce编程模型,以及基于hdfs和MapR ...
- ThinkPHP 自动创建数据、自动验证、自动完成详细例子介绍(十九)
原文:ThinkPHP 自动创建数据.自动验证.自动完成详细例子介绍(十九) 1:自动创建数据 //$name=$_POST['name']; //$password=$_POST['password ...
- hadoop学习第一天-hadoop初步环境搭建&伪分布式计算配置(详细)
一.虚拟机环境搭建 我们用的虚拟机为vmware,Linux镜像为centOS6.5. vmware安装 安装没什么多说的,一路下一步,但是在新建虚拟机的时候有两个地方需要注意: 1.分配处理器1个就 ...
- [原]Redis详细配置介绍
Redis详细配置介绍 # redis 配置文件示例 # 当你需要为某个配置项指定内存大小的时候,必须要带上单位, # 通常的格式就是 1k 5gb 4m 等酱紫: # # 1k => 1000 ...
- 更为详细的Txtsetup.sif文件解释
更为详细的Txtsetup.sif文件解释;代码页定义, 以免文本安装模式下无法正常显示简体中文 (以下基本都是跟简体中文相关的, 不同语言版本的 Windows, 此处定义也不同)[nls]Ansi ...
- 详细版在虚拟机安装和使用hadoop分布式集群
集群模式: 一台master 192.168.85.2 一台slave 192.168.85.3 jdk jdk1.8.0_74(版本不重要,看喜欢) hadoop版本 2.7.2(版本不重要,2. ...
- Hadoop(三) HADOOP常用命令参数介绍
-help 功能:输出这个命令参数手册 -ls 功能:显示目录信息 示例: hadoop fs -ls hdfs://hadoop-server01:9000/ 备注 ...
随机推荐
- php正则判断手机号码的方法
导读: php用正则表达式判断手机号码的写法:从文章中匹配出所有的手机号就可以preg_match_all(),如果要检查用户输入的手机号是否正确可这样来检查:preg_match(). 用正则匹配手 ...
- fastdfs5.x Java客户端简单例子
下载源码, 使用maven编译并安装 https://github.com/happyfish100/fastdfs-client-java.git 新建maven工程,引入fastdfs-clien ...
- Flume(二)Flume的Source类型
一.概述 官方文档介绍:http://flume.apache.org/FlumeUserGuide.html#flume-sources 二.Flume Sources 描述 2.1 Avro So ...
- Maven入门使用(一)
一.什么是maven 一般认为maven是项目构建工具+依赖管理工具+项目信息管理工具. maven是一个强大的构建工具,能够帮助我们自动化构建过程. 清理.编译.测试.生成报告.打包.部署都是可以通 ...
- WebApi使用JWT认证(二)
这是第二部:实现NetCore上的WebApi使用JWT认证 1.NetCore新建一个WebApi的项目 2.打开AppSettings.json,添加Jwt的信息,这里为了演示而已 { " ...
- Kail Linux渗透测试教程之在Metasploit中扫描
Kail Linux渗透测试教程之在Metasploit中扫描 在Metasploit中扫描 在Metasploit中,附带了大量的内置扫描器.使用这些扫描器可以搜索并获得来自一台计算机或一个完整网络 ...
- 2017/11/22 Leetcode 日记
2017/11/22 Leetcode 日记 136. Single Number Given an array of integers, every element appears twice ex ...
- 【十大经典数据挖掘算法】k
[十大经典数据挖掘算法]系列 C4.5 K-Means SVM Apriori EM PageRank AdaBoost kNN Naïve Bayes CART 1. 引言 k-means与kNN虽 ...
- 【BZOJ 3560】 3560: DZY Loves Math V (欧拉函数)
3560: DZY Loves Math V Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 241 Solved: 133 Description ...
- BZOJ4599[JLoi2016&LNoi2016]成绩比较(dp+拉格朗日插值)
这个题我们首先可以dp,f[i][j]表示前i个科目恰好碾压了j个人的方案数,然后进行转移.我们先不考虑每个人的分数,先只关心和B的相对大小关系.我们设R[i]为第i科比B分数少的人数,则有f[i][ ...