HDU - 2204 Eddy's爱好 (数论+容斥)
题意:求\(1 - N(1\le N \le 1e18)\)中,能表示成\(M^k(M>0,k>1)\)的数的个数
分析:正整数p可以表示成\(p = m^k = m^{r*k'}\)的形式,其中k'为素数。枚举幂k,求出满足\(p^k\le N\)的最大的\(p\),则对于当前的\(k\),任意小于\(p\)的正整数\(p'\),都有\(p'^{k}<N\),因此在\(1-N\)范围内有\(N^{\frac{1}{k}}\)个满足条件的数。
因为\(2^{60}>10^{18}\),所以枚举到的k'最多不超过60,预处理出60以内的所有素数。
又\(2*3*5=30,2*3*5*7=210>60\),所以最多只考虑3个素幂次相乘的情况。
但是如此枚举会出现重复的情况,例如\((2^{3})^{2} = (2^{2})^{3} = 2^6\)在枚举\(k=2\)和\(k=3\)时重复了,根据容斥的思想,枚举到偶数个素幂次相乘时,减去该结果。
*注意每次计算\(N^{\frac{1}{k}}\)时,减去1的情况,最后将结果加1,因为1在每种情况中都会出现,不必重复。
#include<stdio.h>
#include<iostream>
#include<algorithm>
#include<cstring>
#include<vector>
#include<cmath>
using namespace std;
typedef long long LL;
const int maxn = 1e5+5;
const LL prime[20] ={2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59};
const int len = 17;
const double eps =1e-8;
LL ans;
LL N;
void dfs(int pos,int num,int tot,LL k = 1)
{
if(k>60) return;
if(num==tot){
LL p = (LL)(pow(N,1.0/(0.0+k))+eps)-1;
ans +=p;
return;
}
if(pos==len) return;
dfs(pos+1,num,tot,k);
dfs(pos+1,num+1,tot,k*prime[pos]);
}
int main()
{
#ifndef ONLINE_JUDGE
freopen("in.txt","r",stdin);
freopen("out.txt","w",stdout);
#endif
while(scanf("%lld",&N)==1){
LL res= 0;
for(int i =1;i<=3;++i){
ans=0;
dfs(0,0,i);
if(i&1) res+=ans;
else res-=ans;
}
res+=1;
printf("%lld\n",res);
}
return 0;
}
HDU - 2204 Eddy's爱好 (数论+容斥)的更多相关文章
- HDU 2204 Eddy's 爱好 (容斥原理)
<题目链接> 题目大意: Ignatius 喜欢收集蝴蝶标本和邮票,但是Eddy的爱好很特别,他对数字比较感兴趣,他曾经一度沉迷于素数,而现在他对于一些新的特殊数比较有兴趣. 这些特殊数是 ...
- hdu 2204 Eddy's爱好 容斥原理
Eddy's爱好 Time Limit: 3000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Problem ...
- HDU 2204 Eddy's爱好(容斥原理dfs写法)题解
题意:定义如果一个数能表示为M^k,那么这个数是好数,问你1~n有几个好数. 思路:如果k是合数,显然会有重复,比如a^(b*c) == (a^b)^c,那么我们打个素数表,指数只枚举素数,2^60 ...
- HDU 2204 Eddy's爱好(容斥原理)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2204 解题报告:输入一个n让你求出[1,n]范围内有多少个数可以表示成形如m^k的样子. 不详细说了, ...
- hdu 2204 Eddy's爱好
// 一个整数N,1<=N<=1000000000000000000(10^18).// 输出在在1到N之间形式如M^K的数的总数// 容斥原理// 枚举k=集合{2,3,5,7,11,1 ...
- POJ 1150 The Last Non-zero Digit 数论+容斥
POJ 1150 The Last Non-zero Digit 数论+容斥 题目地址: id=1150" rel="nofollow" style="colo ...
- 数论 + 容斥 - HDU 4059 The Boss on Mars
The Boss on Mars Problem's Link Mean: 给定一个整数n,求1~n中所有与n互质的数的四次方的和.(1<=n<=1e8) analyse: 看似简单,倘若 ...
- 数论 + 容斥 - HDU 1695 GCD
problem's Link mean 给定五个数a,b,c,d,k,从1~a中选一个数x,1~b中选一个数y,使得gcd(x,y)=k. 求满足条件的pair(x,y)数. analyse 由于b, ...
- hdu 5792(树状数组,容斥) World is Exploding
hdu 5792 要找的无非就是一个上升的仅有两个的序列和一个下降的仅有两个的序列,按照容斥的思想,肯定就是所有的上升的乘以所有的下降的,然后再减去重复的情况. 先用树状数组求出lx[i](在第 i ...
随机推荐
- ios开发之--CGRect/CGSize/CGPoint/CGVector/CGAffineTransform/UIEdgeInsets/UIOffset和NSString之间的转换
仅做记录,一个函数和字符串之间的互相转换 方法如下: UIKIT_EXTERN NSString *NSStringFromCGPoint(CGPoint point); UIKIT_EXTERN N ...
- Vim相关优化和配置
升级pythonwget https://www.python.org/ftp/python/3.6.5/Python-3.6.5.tgztar -xvf Python-3.6.5.tgzcd Pyt ...
- 非IE图片上传预览
$("#uploadFiles").change(function (e) { if (e.target.files) { ...
- 【黑金原创教程】【TimeQuest】【第七章】供源时钟与其他
声明:本文为黑金动力社区(http://www.heijin.org)原创教程,如需转载请注明出处,谢谢! 黑金动力社区2013年原创教程连载计划: http://www.cnblogs.com/al ...
- linux如何查看端口是否被占用?
转自:https://www.cnblogs.com/hindy/p/7249234.html LINUX中如何查看某个端口是否被占用 之前查询端口是否被占用一直搞不明白,问了好多人,终于搞懂了,现在 ...
- ThreadLocal分析总结:
1.ThreadLocal 是什么 它是一个数据结构,像 HashMap,可保存 "key : value" 键值对:ThreadLocal 有一个内部类ThreadLocalMa ...
- Hibernate与数据库的触发器协同工作
Hibernate 与数据库中的触发器协同工作时, 会造成两类问题 1触发器使 Session 的缓存中的持久化对象与数据库中对应的数据不一致:触发器运行在数据库中, 它执行的操作对 Session ...
- Exchange Management Console Error
Exchange 2010 error solved : The WS-Management service cannot process the request. The system load q ...
- 浏览器端js处理or直接冗余至服务器php处理?
w交给客户端浏览器js处理,减少向服务器的提交字节.精简处理逻辑.
- [LeetCode] 7.Reverse Integer - Swift
Reverse digits of an integer. Example1: x = , return Example2: x = -, return - 题目意思:对一个整型进行反转 实现代码: ...