矩形覆盖

题目描述

  我们可以用(2*1)的小矩形横着或者竖着去覆盖更大的矩形。请问用n个(2*1)的小矩形无重叠地覆盖一个(2*n)的大矩形,总共有多少种方法?


实现代码

function jumpFloor(number)
{
if (number<0){
return -1;
}else if(number <=2){
return number
}
var arr = [];
arr[0] = 1;
arr[1] = 2;
for(var i = 2; i < number; i++) {
arr[i] = arr[i - 1] + arr[i - 2];
}
return arr[number-1];

思路

1. 先上图:

  2*1的大矩形和2*n的小矩形:

2. 第一次覆盖有两种情况:

  横着覆盖:

  竖着覆盖:



3. 由此可得:

  • 当第一次横着覆盖时,覆盖方法为f(n-2);
  • 当第一次竖着覆盖时,覆盖方法为f(n-1);
  • 因此f(n)=f(n-1)+f(n-2);
  • 当n=1时,只有1种覆盖方法,当n=2时,有2种覆盖方法。
  • 此题最终得出的仍然是一个斐波那契数列。

    n=1, f(n)=1

    n=2, f(n)=2

    n>2,且为整数, f(n)=f(n-1)+f(n-2)

《剑指offer》— JavaScript(10)矩形覆盖的更多相关文章

  1. 【剑指offer】10矩阵覆盖

    原创博文,转载请注明出处! 0.简介 # 本文是牛客网<剑指offer>刷题笔记,笔记索引链接 1.题目 # 用2*1的小矩形横着或者竖着去覆盖更大的矩形.请问用n个2*1的小矩形无重叠地 ...

  2. 剑指offer十之矩形覆盖

    一.题目 我们可以用2*1的小矩形横着或者竖着去覆盖更大的矩形.请问用n个2*1的小矩形无重叠地覆盖一个2*n的大矩形,总共有多少种方法? 二.解答思路 如果第一步选择竖方向填充,则剩下的填充规模缩小 ...

  3. 剑指 offer set 4 矩形覆盖

    总结 1. 斐波那契数列的变形题, 但是稍有隐晦, 有点意思 2. 求解 f(3) 时, 最后一块矩形可以竖着放, 也可以两块矩形横着放, 分别对应于 f(2) 和 f(1) ------------ ...

  4. 剑指offer 面试10题

    面试10题: 题目:大家都知道斐波那契数列,现在要求输入一个整数n,请你输出斐波那契数列的第n项.n<=39 n=0时,f(n)=0 n=1时,f(n)=1 n>1时,f(n)=f(n-1 ...

  5. 【剑指offer】10:矩形覆盖

    题目描述: 我们可以用2*1的小矩形横着或者竖着去覆盖更大的矩形.请问用n个2*1的小矩形无重叠地覆盖一个2*n的大矩形,总共有多少种方法? 解题思路: ①方法一 对于这种题没有思路怎么办?可以先从最 ...

  6. 剑指offer(10)矩形覆盖

    题目描述 我们可以用2*1的小矩形横着或者竖着去覆盖更大的矩形.请问用n个2*1的小矩形无重叠地覆盖一个2*n的大矩形,总共有多少种方法? 题目分析 当然也可以逆向思维 应为可以横着放或竖着放,多以f ...

  7. 【剑指Offer】10、矩形覆盖

      题目描述:   我们可以用2 X 1的小矩形横着或者竖着去覆盖更大的矩形.请问用n个2 X 1的小矩形无重叠地覆盖一个2 X n的大矩形,总共有多少种方法?   解题思路:   我们可以以2 X ...

  8. AcWing 30. 正则表达式匹配 (剑指OFFER leetcode 10)

    题目描述请实现一个函数用来匹配包括’.’和’*’的正则表达式. 模式中的字符’.’表示任意一个字符,而’*’表示它前面的字符可以出现任意次(含0次). 在本题中,匹配是指字符串的所有字符匹配整个模式. ...

  9. 剑指 offer set 10 栈的压入、弹出序列

    总结 1. 通过按位对比来判断, 没有更优的方法了

  10. 剑指offer第10题

    import java.util.Scanner; /* 前两种方法是看最低为是不是为1,不为1则向右移动. 第一种只能对正整数有效,对负数不行,因为负数用的是补码,最高外符号位为1,最后右移动,肯定 ...

随机推荐

  1. Elastic-Job 分布式调度平台

    概述 referred:http://elasticjob.io/docs/elastic-job-lite/00-overview Elastic-Job是一个分布式调度解决方案,由两个相互独立的子 ...

  2. java.util.MissingResourceException: Can't find bundle for base name init, locale zh_CN问题的处理

    一.问题描述 项目开发使用的是SSM框架,项目那个正常运行,开发一个新功能后,添加了一些配置文件,再重新运行项目抛出异常,找不到name为init的bean. 二.异常信息详细 六月 30, 2018 ...

  3. 解决xampp启动mysql失败

    进入到注册表内 命令:regedit 进入到路径:计算机\HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\MySQL 修改路径为:" ...

  4. STC 单片机ADC实现原理

    模数转换器原理 数模转换器( analog to digitI converter,ADC),简称为A/D,ADC是链接模拟世界和数字世界的桥梁.它用于将连续的模拟信号转换为数字形式离散信号.典型的, ...

  5. Python基础灬补充(循环、格式化输出)

    for循环&格式化输出 chinese_zodiac = '鼠牛虎兔龙蛇马羊猴鸡狗猪' for year in range(2000, 2013): print("%s年的生肖是:% ...

  6. [咸恩静][Coffee House]

    歌词来源:http://music.163.com/#/song?id=5400159 하루의 시작은 향긋한 커피 [ha-lu-e xi-ja-geun hyang-geu-Tan Keo-Pi] ...

  7. PHP开发中常见的漏洞及防范

    PHP开发中常见的漏洞及防范 对于PHP的漏洞,目前常见的漏洞有五种.分别是Session文件漏洞.SQL注入漏洞.脚本命令执行漏洞.全局变量漏洞和文件漏洞.这里分别对这些漏洞进行简要的介绍和防范. ...

  8. 20181120-8 Beta阶段第2周/共2周 Scrum立会报告+燃尽图 06

    此作业要求参见:https://edu.cnblogs.com/campus/nenu/2018fall/homework/2414 版本控制地址    [https://git.coding.net ...

  9. 针对某一网站的UI进行分析

    本周课上教学通过对PM(项目经理)的学习,我了解到PM 对项目所有功能的把握, 特别是有关的UI内容.最差的UI, 体现了团队的组织架构:其次, 体现了产品的内部结构:最好, 体现了用户的自然需求. ...

  10. OpenCV学习笔记——Mat类型数据存储

    CV_[The number of bits per item][Signed or Unsigned][Type Prefix]C[The channel number] 比如 CV_8UC3 表示 ...