SGU495Kids and Prizes(数学期望||概率DP||公式)
495. Kids and Prizes
Memory limit: 262144 kilobytes
output: standard
ICPC (International Cardboard Producing Company) is in the business of producing cardboard boxes. Recently the company organized a contest for kids for the best design of a cardboard box and selected M winners. There are N prizes for the winners, each one carefully packed in a cardboard box (made by the ICPC, of course). The awarding process will be as follows:
- All the boxes with prizes will be stored in a separate room.
- The winners will enter the room, one at a time.
- Each winner selects one of the boxes.
- The selected box is opened by a representative of the organizing committee.
- If the box contains a prize, the winner takes it.
- If the box is empty (because the same box has already been selected by one or more previous winners), the winner will instead get a certificate printed on a sheet of excellent cardboard (made by ICPC, of course).
- Whether there is a prize or not, the box is re-sealed and returned to the room.
The management of the company would like to know how many prizes will be given by the above process. It is assumed that each winner picks a box at random and that all boxes are equally likely to be picked. Compute the mathematical expectation of the number of prizes given (the certificates are not counted as prizes, of course).
The first and only line of the input file contains the values of N and M ().
The first and only line of the output file should contain a single real number: the expected number of prizes given out. The answer is accepted as correct if either the absolute or the relative error is less than or equal to 10 -9.
sample input |
sample output |
5 7 |
3.951424 |
sample input |
sample output |
4 3 |
2.3125 |
| Online Contester Team © 2002 - 2010. All rights reserved. |
InputThe first and only line of the input file contains the values of N and M ().OutputThe first and only line of the output file should contain a single real number: the expected number of prizes given out. The answer is accepted as correct if either the absolute or the relative error is less than or equal to 10 -9.Sample Input
sample input |
sample output |
5 7 |
3.951424 |
sample input |
sample output |
4 3 |
2.3125 |
题意:
有n个奖品,m个人排队来选礼物,对于每个人,他打开的盒子,可能有礼物,也有可能已经被之前的人取走了。为最后m个人取走礼物的期望。
思路:
排队取,第1个人取到1个,dp[1]=1;后面的人dp[i]=p取到礼物盒子+dp取到礼物=(n-dp[i-1])/n + dp[i-1];
当然,也可以化简为公式 printf("%.10lf\n",n*1.0*(1-pow((n-1)*1.0/n,m)));
#include<cstdio>
#include<cstdlib>
#include<iostream>
#include<algorithm>
#include<cstring>
#include<algorithm>
using namespace std;
double dp[];
int main()
{
int n,m,i;
while(~scanf("%d%d",&n,&m)){
dp[]=;
for(i=;i<=m;i++) dp[i]=dp[i-]+(n-dp[i-])/n;
printf("%.9lf\n",dp[m]);
}return ;
}
SGU495Kids and Prizes(数学期望||概率DP||公式)的更多相关文章
- UVa 11427 Expect the Expected (数学期望 + 概率DP)
题意:某个人每天晚上都玩游戏,如果第一次就䊨了就高兴的去睡觉了,否则就继续直到赢的局数的比例严格大于 p,并且他每局获胜的概率也是 p,但是你最玩 n 局,但是如果比例一直超不过 p 的话,你将不高兴 ...
- ZOJ3640Help Me Escape(师傅逃亡系列•一)(数学期望||概率DP)
Background If thou doest well, shalt thou not be accepted? and if thou doest not well, sin lieth at ...
- POJ3682King Arthur's Birthday Celebration(数学期望||概率DP)
King Arthur is an narcissist who intends to spare no coins to celebrate his coming K-th birthday. Th ...
- SGU495Kids and Prizes 数学期望
题意: 有n个奖品,m个人排队来选礼物,对于每个人,他打开的盒子,可能有礼物,也有可能已经被之前的人取走了,然后把盒子放回原处.为最后m个人取走礼物的期望. 题解: 本道题与之前的一些期望 DP 题目 ...
- HDU 3853 期望概率DP
期望概率DP简单题 从[1,1]点走到[r,c]点,每走一步的代价为2 给出每一个点走相邻位置的概率,共3中方向,不动: [x,y]->[x][y]=p[x][y][0] , 右移:[x][y ...
- 【BZOJ 3652】大新闻 数位dp+期望概率dp
并不难,只是和期望概率dp结合了一下.稍作推断就可以发现加密与不加密是两个互相独立的问题,这个时候我们分开算就好了.对于加密,我们按位统计和就好了;对于不加密,我们先假设所有数都找到了他能找到的最好的 ...
- 【BZOJ 3811】玛里苟斯 大力观察+期望概率dp+线性基
大力观察:I.从输出精准位数的约束来观察,一定会有猫腻,然后仔细想一想,就会发现输出的时候小数点后面不是.5就是没有 II.从最后答案小于2^63可以看出当k大于等于3的时候就可以直接搜索了 期望概率 ...
- 【NOIP模拟赛】黑红树 期望概率dp
这是一道比较水的期望概率dp但是考场想歪了.......我们可以发现奇数一定是不能掉下来的,因为若奇数掉下来那么上一次偶数一定不会好好待着,那么我们考虑,一个点掉下来一定是有h/2-1个红(黑),h/ ...
- BZOJ1415: [Noi2005]聪聪和可可 最短路 期望概率dp
首先这道题让我回忆了一下最短路算法,所以我在此做一个总结: 带权: Floyed:O(n3) SPFA:O(n+m),这是平均复杂度实际上为O(玄学) Dijkstra:O(n+2m),堆优化以后 因 ...
随机推荐
- 【论文解析】MTCNN论文要点翻译
目录 0.论文连接 1.前言 2.论文Abstract翻译 3.论文的主要贡献 4.4 训练 5 模型性能分析 5.1 关于在线挖掘困难样本的性能 5.2 将人脸检测与对齐联合的性能 5.3 人脸检测 ...
- MapReduce 应用实例
Hadoop 版本2.8.0 前期准备工作: 1. 设置用户环境变量 PATH 和 CLASSPATH 方便执行 Hadoop 命令时不用转移到对应的目录下,shell 除了会在当前目录下还会到 PA ...
- CDN专业一站式解决方案
调度,弱网加速,动态防御,无限节点(重)新技术
- Linux命令详解-pwd
Linux中用 pwd 命令来查看"当前工作目录"的完整路径. 简单得说,每当你在终端进行操作时,你都会有一个当前工作目录. 在不太确定当前位置时,就会使用pwd来判定当前目录在文 ...
- hack games
记下,有时间玩玩~ wargame http://www.wechall.net/lang_ranking/en --------------- Monyer系列(黑客游戏) 1. http://mo ...
- Linux中awk后面的RS, ORS, FS, OFS 用法
Linux中awk后面的RS, ORS, FS, OFS 含义 一.RS 与 ORS 差在哪 我们经常会说,awk是基于行列操作文本的,但如何定义“行”呢?这就是RS的作用. 默认情况下,RS的 ...
- iptables详解(12):iptables动作总结之一
前文一直在介绍iptables的匹配条件,并没有对动作进行过总结,那么此处,我们就来总结一下iptables中的动作. 之前的举例中已经用到了一些常用动作,比如ACCEPT.DROP.REJECT等. ...
- 微信小程序单个倒计时效果
var end_time = grouponList.expire_time.replace(/-/g, '/') grouponcountdown(that, end_time) //适用于商品列表 ...
- LeetCode OJ : Different Ways to Add Parentheses(在不同位置增加括号的方法)
Given a string of numbers and operators, return all possible results from computing all the differen ...
- jQuery实现点击式选项卡
参考:jQuery权威指南jQuery初步jQuery选择器jQuery操作domjQuery操作dom事件jQuery插件jQuery操作AjaxjQuery动画与特效jQuery实现导航栏jQue ...