【算法剖析】寻找两个已序数组中的第k大元素
1、问题描述
给定两个数组A与B,其大小分别为m、n,假定它们都是已按照增序排序的数组,我们用尽可能快的方法去求两个数组合并后第k大的元素,其中,1\le k\le(m+n)。例如,对于数组A=[1,3,5,7,9],B=[2,4,6,8]。我们记第k大的数为max_{k-th},则k=4时,max_{4-th}=4。这是因为排序之后的数组A+B=[1,2,3,4,5,6,7,8,9],第4大的数是4。我们针对这一个问题进行探讨。
2、算法一
第一眼看到这个题的时候,我们能够很快地想出来最基本的一种解法:对数组A和B进行合并,然后求出其第k大的数,即找到答案。合并的过程,我们可以参考归并排序的合并子数组的过程,时间复杂度为O(m+n)。下面给出算法:
int findKthMaxNumOfArrays(int *a,int m,int *b,int n,int k)
{
int *p=a;
int *q=b;
int i=;
int j=;
int cur=;
while(i<m&&j<n)
{
if(a[i]<b[j])
{
cur++;
if(cur==k) return a[i];
i++;
}
else
{
cur++;
if(cur==k) return b[j];
j++;
}
}
while(i<m)
{
cur++;
if(cur==k) return a[i];
i++;
}
while(j<n)
{
cur++;
if(cur==k) return b[j];
j++;
}
}
3、算法二
实际上算法一的时间复杂度已经是线性的了。可是,是否存在更快的算法能够完成这项任务呢?答案是肯定的,时间复杂度可以缩短到O(log(m+n))时间内。在这种算法中,二分的思想十分重要。我们将数组A分为两半,前一部分的大小为\left \lfloor \frac{m}{2} \right \rfloor,后一部分为m- \left \lfloor \frac{m}{2} \right \rfloor;数组B同时分为这样两部分,第一部分的大小为\left \lfloor \frac{n}{2} \right \rfloor,第二部分的大小为n- \left \lfloor \frac{n}{2} \right \rfloor。如下图所示:


通过a_{\frac{m}{2}}与b_{\frac{n}{2}},我们将每个数组分为2部分,分别记为A1、A2和B1、B2。假定b_{\frac{n}{2}} \ge a_{\frac{m}{2}},如果不是,我们只需要交换A、B两个数组即可。接下来,我们看第k大的数落在了哪个区间里面,令t=a_{\frac{m}{2}}+b_{\frac{n}{2}}+1,这个t实际上是包含了A1,a_{\frac{m}{2}},B1。如果k\le t时,则说明max_{k-th}肯定不在B2里面,这是由于:B2中的所有数\ge b_{\frac{n}{2}},而b_{\frac{n}{2}} \ge A1,B1中的所有数与a_{\frac{m}{2}},而这部分数总共有t个,说明b_{\frac{n}{2}}起码是第t+1个,若max_{k-th}出现在B2中,则说明k\ge t+1,与假设矛盾。我们可以得出该结论。因此,在判断之后,我们可以剔除数组B的B2部分,然后再在新数组中寻找;另外,如果k\ge t,则说明max_{k-th}肯定不在A1部分,这部分的证明同上一个证明相同,不再赘述。同样地,在判断之后,我们可以剔除数组A的A1部分,然后再在新数组中寻找。基于这样一种思想,我们每次迭代,都删除了其中一个数组中一半的元素,时间复杂度大约可认为是O(log(m+n))。
在实现的时候,我们需要特别注意边界条件,详细的代码如下:
int findKthMaxNumOfArrays(int *A, int m, int *B, int n, int k)
{
if(m == )return B[k-];
if(n == )return A[k-];
int i = m>>, j = n>>, *p, *q, t;
if(A[i] <= B[j])p = A, q = B;
else p = B, q = A, swap(i, j), swap(m, n);
t = i + j + ;
if(t >= k)return findKthMaxNumOfArrays(p, m, q, j, k);
else if(t < k)return findKthMaxNumOfArrays(p+i+, m-i-, q, n, k-i-);
}
算法二
4、扩展问题
通过算法二,我们很容易地解决一个类似的问题:求两个已序数组A,B的中位数。所谓的中位数,对于一个有n个元素的已序数组,如果n是奇数,则中位数是第\frac{n+1}{2}个元素的值;如果n是偶数,则它的中位数是第\frac{n}{2}与第\frac{n}{2}+1数的平均值。对于m+n为奇数,则利用算法二求第\frac{n+m+1}{2}个元素的值即可,对于m+n为偶数,利用算法二求第\frac{m+n}{2}个与第\frac{m+n}{2}+1个元素的值,求其平均值即可。
对于这个问题,在LeetCode中有另外一种解法,但是阅读后发现其需要处理的个别case太多,相比而言没有本文所介绍的算法简洁。如果想要了解,给出链接:http://leetcode.com/2011/03/median-of-two-sorted-arrays.html。
【算法剖析】寻找两个已序数组中的第k大元素的更多相关文章
- 寻找两个已序数组中的第k大元素
寻找两个已序数组中的第k大元素 1.问题描述 给定两个数组与,其大小分别为.,假定它们都是已按照增序排序的数组,我们用尽可能快的方法去求两个数组合并后第大的元素,其中,.例如,对于数组,.我们记第大的 ...
- leetcode-4. 寻找两个正序数组的中位数
leetcode-4. 寻找两个正序数组的中位数. 给定两个大小为 m 和 n 的正序(从小到大)数组 nums1 和 nums2. 请你找出这两个正序数组的中位数,并且要求算法的时间复杂度为 O(l ...
- 17082 两个有序数序列中找第k小
17082 两个有序数序列中找第k小 时间限制:1000MS 内存限制:65535K 提交次数:0 通过次数:0 题型: 编程题 语言: 无限制 Description 已知两个已经排好序(非减 ...
- 17082 两个有序数序列中找第k小(优先做)
17082 两个有序数序列中找第k小(优先做) 时间限制:1000MS 内存限制:65535K提交次数:0 通过次数:0 题型: 编程题 语言: G++;GCC;VC Description 已 ...
- 17082 两个有序数序列中找第k小(优先做) O(logn)
17082 两个有序数序列中找第k小(优先做) 时间限制:1000MS 内存限制:65535K提交次数:0 通过次数:0 题型: 编程题 语言: G++;GCC;VC Description 已 ...
- 如何寻找无序数组中的第K大元素?
如何寻找无序数组中的第K大元素? 有这样一个算法题:有一个无序数组,要求找出数组中的第K大元素.比如给定的无序数组如下所示: 如果k=6,也就是要寻找第6大的元素,很显然,数组中第一大元素是24,第二 ...
- 微软面试题: LeetCode 4. 寻找两个正序数组的中位数 hard 出现次数:3
题目描述: 给定两个大小为 m 和 n 的正序(从小到大)数组 nums1 和 nums2.请你找出并返回这两个正序数组的中位数. 进阶:你能设计一个时间复杂度为 O(log (m+n)) 的算法解决 ...
- leetcode 刷题(数组篇)4题 寻找两个正序数组的中位数(二分查找)
题目描述 给定两个大小分别为 m 和 n 的正序(从小到大)数组 nums1 和 nums2.请你找出并返回这两个正序数组的 中位数 . 示例 1: 输入:nums1 = [1,3], nums2 = ...
- Leetcode随缘刷题之寻找两个正序数组的中位数
我一上来没读清题,想着这题这么简单,直接就上手写了: package leetcode.day_12_05; import java.util.ArrayList; import java.util. ...
随机推荐
- 提示框框架KVNProgress介绍
gitHub上面有很多显示加载进度的框架,这里我们介绍一下KVNProgress框架,KVNProgress是一个可以完全定制的HUD(指示器),你可以设置加载进度的画面是否全屏,可以自己修改进度显示 ...
- 最新iOS砸壳方式Frida (Mac OSX)
1. 安装Frida 首先需要安装Python3,我下载的是 macOS 64-bit installer 安装,因Macbook本机自带python为2.7.x,故需要配置~/.bash_profi ...
- MyISAM重启之后的一次血泪教训
最近经历了一次MyISAM重启的血泪教训,小小的故障历经3个小时才全部解决完毕,特此铭记一下,以后坚决防止在同一个地方跌倒两次. 事情的过程: 某日早7点接到几条主库报警,给值班组打电话后得到的消息是 ...
- HDU 4690 EBCDIC (2013多校 1005题 胡搞题)
EBCDIC Time Limit: 2000/2000 MS (Java/Others) Memory Limit: 102400/102400 K (Java/Others)Total Su ...
- Digital controller compensates analog controller
Emerging digital ICs for power control lack basic features, such as the built-in gate drive and curr ...
- 【提醒】使用 iptables 时,特别注意 规则的顺序
在 centos 上安装 redis 服务器,很快就搞定了,服务器上使用 redis-cl 测试都没有问题了. 但到宿主机上测试,怎么测试都不通过,关键是:关闭了 centos 的 Iptables ...
- Javascript:前端利器 之 JSDuck
背景 文档的重要性不言而喻,对于像Javascript这种的动态语言来说就更重要了,目前流行的JDoc工具挺多的,最好的当属JSDuck,可是JSDuck在Windows下的安装非常麻烦,这里就写下来 ...
- HTML+CSS网站开发兵书
<HTML+CSS网站开发兵书> 基本信息 作者: 高洪涛 丛书名: 程序员藏经阁 出版社:电子工业出版社 ISBN:9787121212369 上架时间:2013-8-26 出版日期:2 ...
- jQuery 回调函数
jQuery(回调函数) 此函数的作用将callback参数以函数的定义形式,在页面onload的时候进行调用.相当于$(document).ready(callback). <script t ...
- iOS开源项目:asi-http-request
使用CFNetwork实现的http库,能同时在iphone和macos下使用:http://allseeing-i.com/ASIHTTPRequest/ 他提供以下功能: 向服务器发送或者从服务器 ...