题目描述:

  给定两个大小为 m 和 n 的正序(从小到大)数组 nums1 和 nums2。请你找出并返回这两个正序数组的中位数。

进阶:你能设计一个时间复杂度为 O(log (m+n)) 的算法解决此问题吗?

方法1:

总体思路: 同时遍历 num1 和nums2 ,比较num1和nums2中当前遍历到的两个元素 nums1[i] 和 nums[j] 的大小。若nums1[i] 小则

i 前进一位,j 不动,反之,j 前进一位 ,i 不动,直到遍历到中位数的下标 或者 其中一个数组遍历结束 再继续单独遍历另一个数组,

直到找到中位数。由于 中位数需要根据 元素个数是奇数和偶数两种情况讨论,此种算法实现上细节判断较多,容易出错,最终写出的代码

结构也比较凌乱。且 时间复杂度 O(m + n),空间复杂度O(1) 性能上也不符合题目的要求。

重点关注第二种  O(log (m+n)) 的算法

  1 #include <string>
2 #include <vector>
3 #include <cmath>
4
5 using namespace std;
6 class Solution {
7 public:
8 //O(m+n)
9 double findMedianSortedArrays(vector<int>& nums1, vector<int>& nums2)
10 {
11 int m = nums1.size();
12 int n = nums2.size();
13 bool odd = true;//奇数
14 if( (m+n) % 2 == 0) odd = false;//偶数
15 int mid = (m+n)/2;
16 int k = 0;
17 int front = 0;
18 int i = 0,j = 0;
19 for(;i<m && j<n;)
20 {
21 if(k == mid)
22 {
23 if(odd)
24 {
25 return nums1[i]<nums2[j]?nums1[i]:nums2[j]/1.000000;
26 }
27 else
28 {
29 int tmp = nums1[i]<nums2[j]?nums1[i]:nums2[j];
30 return (tmp+front)/2.000000;
31 }
32 }
33 else
34 {
35 if(nums1[i]<nums2[j]){
36 front = nums1[i];
37 i++;
38 }
39 else
40 {
41 front = nums2[j];
42 j++;
43 }
44 k++;
45 }
46 }
47 // printf("k = %d mid = %d i = %d j = %d \n",k,mid,i,j);
48 if(k == 0)
49 {
50 if(j == n)
51 {
52 return odd?nums1[mid]/1.0:(nums1[mid]+nums1[mid-1])/2.0;
53 }
54 else if(i == m){
55 return odd?nums2[mid]/1.0:(nums2[mid]+nums2[mid-1])/2.0;
56 }
57 else{
58 return 0.000000;
59 }
60 }
61 if(odd)
62 {
63 int index ;
64 if(j == n ) //j 已经走完 i 未走完
65 {
66 index = i + (mid+1 - k)-1 ;
67 return index < m?nums1[index]/1.000000:0.000000;
68 // return nums1[index];
69 }
70 else
71 {
72 index = j + (mid+1 - k)-1;
73 return index < n?nums2[index]/1.000000:0.000000;
74 // return nums2[index];
75 }
76 }
77 else
78 {
79 if(j == n)
80 {
81 int idx = i + (mid+1 - k) -1;
82 if(idx <= 0 )
83 {
84 return (nums2[n-1] + nums1[0])/2.000000;
85 }
86 else
87 {
88 int frt = max(nums1[idx-1],nums2[n-1]);
89 return (nums1[idx] + frt)/2.000000;
90 }
91 }
92 else
93 {
94 int idx = j + (mid+1 - k) -1;
95 if(idx <= 0 )
96 {
97 return (nums1[m-1] + nums2[0])/2.000000;
98 }
99 else
100 {
101 int frt = max(nums2[idx-1],nums1[m-1]);
102 return (nums2[idx] + frt)/2.000000;
103 }
104 }
105 }
106 }
107 };

方法2:转化为求第 k 小数的元素

分析:上面的解法中 同时遍历两个数组中的元素并比较大小,对小的元素,在该数组中前进,并统计前进的步数,前进到 (n + m)/2 步,就遍历到

中位数。每次前进相当于去掉不可能是中位数的一个值,也就是一个个排除。由于数列是有序的,其实我们完全可以一半儿一半儿的排除。

具体思路可参考:https://leetcode.wang/leetCode-4-Median-of-Two-Sorted-Arrays.html

代码如下:

 1 class Solution {
2 public:
3 double findMedianSortedArrays(vector<int>& nums1, vector<int>& nums2)
4 {
5 int n = nums1.size();
6 int m = nums2.size();
7 int left = (n + m +1)/2;
8 int right = (n + m +2)/2;
9 //将n+m是奇数和偶数的情况合并,如果是奇数,会求两次两同的k,最终返回两个正序数组的一个中位数
10 //如果是偶数,最终返回两个正序数组的中间两个中位数的平均值
11 return (getKth(nums1,0,n-1,nums2,0,m-1,left)+getKth(nums1,0,n-1,nums2,0,m-1,right))*0.5;
12 }
13 /*
14 使用二分法
15 求 nums1[start1,end1]和 nums2[start2:end2]的第k小元素
16 */
17 double getKth(vector<int>& nums1, int start1,int end1,vector<int>& nums2,int start2,int end2,int k)
18 {
19 int len1 = end1 - start1 +1;
20 int len2 = end2 - start2 +1;
21 //始终将元素少的那个数组作为第一个参数,这样就能保证如果有数组空了,一定是第一个参数的数组
22 if(len1 > len2){
23 return getKth(nums2,start2,end2,nums1,start1,end1,k);
24 }
25 //递归出口1,nums1[start1,end1]空了,返回nums2[start2,end2]中的 第 k 个元素
26 if(len1 == 0)
27 {
28 return nums2[start2 + k - 1];
29 }
30 //递归出口2,返回两个数组的第 start 个元素中较小的一个
31 if(k == 1)
32 {
33 return min(nums1[start1+k-1],nums2[start2+k-1]);
34 }
35 //nums1[start1:end1] 中 第 k/2 个元素的下标,如果nums1[start1:end1] 长度小于 k/2,则取nums[start1:end1]最后一个元素下标
36 int i = start1 + min(k/2,len1) - 1;
37 //nums2[start2:end2] 中 第 k/2 个元素的下标,nums2[start2:end2] 长度一定不会小于 k/2
38 int j = start2 + k/2 - 1;
39 //int j = start2 + min(k/2,len2) - 1;
40 //递归地求 第 k、k/2、k/4、... 、1 个元素,直到遇到递归出口跳出
41 if(nums1[i] < nums2[j])
42 {
43 return getKth(nums1,i+1,end1,nums2,start2,end2,k - (i - start1 +1));
44 }
45 else
46 {
47 return getKth(nums1,start1,end1,nums2,j+1,end2,k - (j - start2 +1));
48 }
49 }
50 };

微软面试题: LeetCode 4. 寻找两个正序数组的中位数 hard 出现次数:3的更多相关文章

  1. leetcode-4. 寻找两个正序数组的中位数

    leetcode-4. 寻找两个正序数组的中位数. 给定两个大小为 m 和 n 的正序(从小到大)数组 nums1 和 nums2. 请你找出这两个正序数组的中位数,并且要求算法的时间复杂度为 O(l ...

  2. 寻找两个已序数组中的第k大元素

    寻找两个已序数组中的第k大元素 1.问题描述 给定两个数组与,其大小分别为.,假定它们都是已按照增序排序的数组,我们用尽可能快的方法去求两个数组合并后第大的元素,其中,.例如,对于数组,.我们记第大的 ...

  3. 【算法剖析】寻找两个已序数组中的第k大元素

    1.问题描述 给定两个数组A与B,其大小分别为m.n,假定它们都是已按照增序排序的数组,我们用尽可能快的方法去求两个数组合并后第k大的元素,其中,1\le k\le(m+n).例如,对于数组A=[1, ...

  4. Java实现 LeetCode 4 寻找两个有序数组的中位数

    寻找两个有序数组的中位数 给定两个大小为 m 和 n 的有序数组 nums1 和 nums2. 请你找出这两个有序数组的中位数,并且要求算法的时间复杂度为 O(log(m + n)). 你可以假设 n ...

  5. 【LeetCode】寻找两个有序数组的中位数【性质分析+二分】

    给定两个大小为 m 和 n 的有序数组 nums1 和 nums2. 请你找出这两个有序数组的中位数,并且要求算法的时间复杂度为 O(log(m + n)). 你可以假设 nums1 和 nums2 ...

  6. [LeetCode] 4. 寻找两个有序数组的中位数

    题目链接:https://leetcode-cn.com/problems/median-of-two-sorted-arrays/ 题目描述: 给定两个大小为 m 和 n 的有序数组 nums1 和 ...

  7. 【LeetCode】寻找两个有序数组的中位数

    给定两个大小为 m 和 n 的有序数组 nums1 和 nums2. 请你找出这两个有序数组的中位数,并且要求算法的时间复杂度为 O(log(m + n)). 你可以假设 nums1 和 nums2  ...

  8. leetcode 4寻找两个有序数组的中位数

    最优解O(log(min(m,n))) /** 之前用合并有序数组的思想做了O((m+n+1)/2),现在试一试O(log(min(m,n))) 基本思路为:通过二分查找较小的数组得到对应的中位数(假 ...

  9. LeetCode Golang 4. 寻找两个有序数组的中位数

    4. 寻找两个有序数组的中位数 很明显我偷了懒, 没有给出正确的算法,因为官方的解法需要时间仔细看一下... func findMedianSortedArrays(nums1 []int, nums ...

  10. Leetcode(4)寻找两个有序数组的中位数

    Leetcode(4)寻找两个有序数组的中位数 [题目表述]: 给定两个大小为 m 和 n 的有序数组 nums1 和* nums2. 请你找出这两个有序数组的中位数,并且要求算法的时间复杂度为 O( ...

随机推荐

  1. ASP.NET将Session保存到数据库中

    因为ASP.NET中Session的存取机制与ASP相同,都是保存在进行中, 一旦进程崩溃,所有Session信息将会丢失,所以我采取了将Session信息保存到SQL Server中,尽管还有其它的 ...

  2. webSocket ws协议测试

    最近公司做了个直播的项目,需要用到Websocket进行通信,因而需要对socket最大连接数及稳定性进行测试.当初得到这一需求的时候,唯一想到的就是jmeter,从百度下载相应的socket依赖ja ...

  3. WPF中ComboBox用法

    The ComboBox control is in many ways like the ListBox control, but takes up a lot less space, becaus ...

  4. WINDOWS下,中文JSON格式读取报错处理:ValueError: No JSON object could be decoded

    File "C:\Python27\lib\json\__init__.py", line 290, in load **kw) File "C:\Python27\li ...

  5. width:100% 和 max-width:100%; 有区别吗【转藏】

    这个博客是基于“Pelican+Markdown+定制的my-gum主题”的.定制的主题将博文正文页面的 右边栏去掉,这导致在Firefox等浏览器中,正文中大的图片会突破正文块的宽度,高度也得不到限 ...

  6. sicily 1119 Factstone Benchmark

    题意:求满足n! < 2^k,n的最大值! 解题:指数比较转换成对数比较,达到降幂! 其中: log (n!) = log(n)+log(n-1)+...+log(1); log(2^k) = ...

  7. Mpmovieplayercontroller 黑屏

    MPMoviePlayerController * moviePlayer; 原因是:你在声明movieplayer的时候,声明成为了局部变量,与此同一时候你的project支持ARC,所以会出现黑屏 ...

  8. ormlite 删除操作

    ormlite删除操作 DeleteBuilder<TransferDetailDtl, Integer> deleteBuilder = mRawDao.deleteBuilder(); ...

  9. JAVA 封装的简单运用

    package Code425;class person{ private String name ; String place; String school; String habits; int ...

  10. [八]基础数据类型之Double详解

    Double 基本数据类型double  的包装类 Double 类型的对象包含一个 double 类型的字段   属性简介 用来以二进制补码形式表示 double 值的比特位数 public sta ...