求有多少$i(<=n-1)$,使 $x^i  \mod n$的值为$[1,n-1]$,其实也就是满足完全剩余类的原根数量。之前好像在二次剩余的讲义PPT里看到这个过。

直接有个定理,如果模k下有原根,那么其原根总数为$\varphi(\varphi(k))$

/** @Date    : 2017-09-21 19:22:16
* @FileName: HDU 2619 原根 完全剩余类.cpp
* @Platform: Windows
* @Author : Lweleth (SoungEarlf@gmail.com)
* @Link : https://github.com/
* @Version : $Id$
*/
#include <bits/stdc++.h>
#define LL long long
#define PII pair<int ,int>
#define MP(x, y) make_pair((x),(y))
#define fi first
#define se second
#define PB(x) push_back((x))
#define MMG(x) memset((x), -1,sizeof(x))
#define MMF(x) memset((x),0,sizeof(x))
#define MMI(x) memset((x), INF, sizeof(x))
using namespace std; const int INF = 0x3f3f3f3f;
const int N = 1e5+20;
const double eps = 1e-8; LL pri[N];
int vis[N];
int c = 0; void prime()
{
MMF(vis);
for(int i = 2; i < N; i++)
{
if(!vis[i]) pri[c++] = i;
for(int j = 0; j < c && i * pri[j] < N; j++)
{
vis[i * pri[j]] = 1;
if(i % pri[j] == 0) break;
}
}
} LL get_phi(LL x)
{
LL res = x;
for(LL i = 0; i < c && pri[i] <= x / pri[i]; i++)
{
if(x % pri[i] == 0)
{
while(x % pri[i] == 0)
x /= pri[i];
res = res / pri[i] * (pri[i] - 1);
}
}
if(x > 1)
res = res / x * (x - 1);
return res;
} int main()
{
prime();
LL n;
while(cin >> n) cout << get_phi(get_phi(n)) << endl;
return 0;
}
//https://zh.wikipedia.org/wiki/%E5%8E%9F%E6%A0%B9
//对正整数 {\displaystyle (a,m)=1} (a,m)=1,
//如果 a 是模 m 的原根,那么 a 是整数模m乘法群(即加法群 Z/mZ 的可逆元,
//也就是所有与 m 互素的正整数构成的等价类构成的乘法群)Zm×的一个生成元。
//由于Zm×有 {\displaystyle \varphi (m)} \varphi (m)个元素,
//而它的生成元的个数就是它的可逆元个数,即 {\displaystyle \varphi (\varphi (m))} \varphi (\varphi (m))个,
//因此当模 {\displaystyle m} m有原根時,它有 {\displaystyle \varphi (\varphi (m))} \varphi (\varphi (m))個原根。

HDU 2619 完全剩余类 原根的更多相关文章

  1. HDU - 4992 Primitive Roots (原根)

    模板题,可用于求一个数的所有原根. #include<bits/stdc++.h> using namespace std; typedef long long ll; ,inf=0x3f ...

  2. 【HDU 4992】 Primitive Roots (原根)

    Primitive Roots   Description We say that integer x, 0 < x < n, is a primitive root modulo n i ...

  3. HDU 5377 (Exgcd + 原根)

    转载自:大牛 知道一个定理了 a ^ x = y (mod p) ===>>   logd(a) * x = logd(y) (mod O(p) )      d 为 p 的 原根,  O ...

  4. HDU 6051 If the starlight never fade(原根+推式子)

    题目大意: 设\(f(i)\)为使\((x+y)^i \equiv x^i (mod\ p)\)成立的(x,y)的对数.其中\(1 \leq x \leq p-1 , 1\leq y\leq m\), ...

  5. hdu 4992 Primitive Roots 【求原根模板】

    题目链接 大题流程: 判定是否有原根->求出最小原根->利用最小原根找出全部原根 #include<bits/stdc++.h> using namespace std; ty ...

  6. 数学--数论--HDU 2104 丢手绢(离散数学 mod N+ 剩余类 生成元)+(最大公约数)

    The Children's Day has passed for some days .Has you remembered something happened at your childhood ...

  7. hdu4992 Primitive Roots(所有原根)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4992 题意:给出n,输出n的所有原根. 思路:求出n的一个原根x,那么对于所以的i,i<phi( ...

  8. hdu 4861 Couple doubi(数论)

    题目链接:hdu 4861 Couple doubi 题目大意:两个人进行游戏,桌上有k个球,第i个球的值为1i+2i+⋯+(p−1)i%p,两个人轮流取,假设DouBiNan的值大的话就输出YES, ...

  9. HDU4992 求所有原根

    Primitive Roots Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)T ...

随机推荐

  1. Android开发第二阶段(5)

    今天:对图片的替换修改,使整个app的图案化更美观. 明天:对Android的对sdcard的操作学习

  2. HDU 5672 String

    题目链接: hdu:http://acm.hdu.edu.cn/showproblem.php?pid=5672 bc(中文):http://bestcoder.hdu.edu.cn/contests ...

  3. timestamp 学习

    该答案摘抄自CSDN. 哇,奇迹,跨度三年了,不知道楼主是否已经解决了此问题. 路过,简单说一下,timestamp 主要是记录该行的最后修改时间戳, 注意,这个时间戳是不可以转换为时间的,只能标注该 ...

  4. lintcode-436-最大正方形

    436-最大正方形 在一个二维01矩阵中找到全为1的最大正方形 样例 1 0 1 0 0 1 0 1 1 1 1 1 1 1 1 1 0 0 1 0 返回 4 标签 动态规划 爱彼迎 脸书 思路 使用 ...

  5. CentOS7实现RabbitMQ高可用集群

    CentOS安装RabbitMQ集群 1.有3台已安装RabbitMQ的机器 192.168.38.133 rabbitmq1 192.168.38.137 rabbitmq2 192.168.38. ...

  6. jQuery之offset,position

    获取/设置标签的位置数据 * offset(): 相对页面左上角的坐标 * position(): 相对于父元素左上角的坐标. 需求: 1. 点击 btn1 打印 div1 相对于页面左上角的位置 打 ...

  7. beta阶段——项目复审

    beta阶段--项目复审 小组的名字和链接 优点 缺点 bug 排名顺序 颜罗王team http://www.cnblogs.com/LDLYMteam 界面清新,音乐能够选择是否播放,词汇按照四六 ...

  8. 2."结对项目"的心得体会

    上个星期,老师给我们布置了个课堂小作业:   某公司程序员二柱的小孩上了小学二年级,老师让家长每天出30道(100以内)四则运算题目给小学生做.二柱立马就想到写一个小程序来做这件事. 这个事情可以用很 ...

  9. Win10 版本情况 201810

  10. Hibernate 中一级缓存和快照区的理解

    刚刚开始的时候觉得这个快照区很难理解,在网上看了很多博客之后,开始明白了.我是结合 ADO.NET 理解的,在ADO.NET 中有一个类, 叫 SqlCommandBuilder,在我看来,他就是 A ...