HDU 2619 完全剩余类 原根
求有多少$i(<=n-1)$,使 $x^i \mod n$的值为$[1,n-1]$,其实也就是满足完全剩余类的原根数量。之前好像在二次剩余的讲义PPT里看到这个过。
直接有个定理,如果模k下有原根,那么其原根总数为$\varphi(\varphi(k))$
/** @Date : 2017-09-21 19:22:16
* @FileName: HDU 2619 原根 完全剩余类.cpp
* @Platform: Windows
* @Author : Lweleth (SoungEarlf@gmail.com)
* @Link : https://github.com/
* @Version : $Id$
*/
#include <bits/stdc++.h>
#define LL long long
#define PII pair<int ,int>
#define MP(x, y) make_pair((x),(y))
#define fi first
#define se second
#define PB(x) push_back((x))
#define MMG(x) memset((x), -1,sizeof(x))
#define MMF(x) memset((x),0,sizeof(x))
#define MMI(x) memset((x), INF, sizeof(x))
using namespace std; const int INF = 0x3f3f3f3f;
const int N = 1e5+20;
const double eps = 1e-8; LL pri[N];
int vis[N];
int c = 0; void prime()
{
MMF(vis);
for(int i = 2; i < N; i++)
{
if(!vis[i]) pri[c++] = i;
for(int j = 0; j < c && i * pri[j] < N; j++)
{
vis[i * pri[j]] = 1;
if(i % pri[j] == 0) break;
}
}
} LL get_phi(LL x)
{
LL res = x;
for(LL i = 0; i < c && pri[i] <= x / pri[i]; i++)
{
if(x % pri[i] == 0)
{
while(x % pri[i] == 0)
x /= pri[i];
res = res / pri[i] * (pri[i] - 1);
}
}
if(x > 1)
res = res / x * (x - 1);
return res;
} int main()
{
prime();
LL n;
while(cin >> n) cout << get_phi(get_phi(n)) << endl;
return 0;
}
//https://zh.wikipedia.org/wiki/%E5%8E%9F%E6%A0%B9
//对正整数 {\displaystyle (a,m)=1} (a,m)=1,
//如果 a 是模 m 的原根,那么 a 是整数模m乘法群(即加法群 Z/mZ 的可逆元,
//也就是所有与 m 互素的正整数构成的等价类构成的乘法群)Zm×的一个生成元。
//由于Zm×有 {\displaystyle \varphi (m)} \varphi (m)个元素,
//而它的生成元的个数就是它的可逆元个数,即 {\displaystyle \varphi (\varphi (m))} \varphi (\varphi (m))个,
//因此当模 {\displaystyle m} m有原根時,它有 {\displaystyle \varphi (\varphi (m))} \varphi (\varphi (m))個原根。
HDU 2619 完全剩余类 原根的更多相关文章
- HDU - 4992 Primitive Roots (原根)
模板题,可用于求一个数的所有原根. #include<bits/stdc++.h> using namespace std; typedef long long ll; ,inf=0x3f ...
- 【HDU 4992】 Primitive Roots (原根)
Primitive Roots Description We say that integer x, 0 < x < n, is a primitive root modulo n i ...
- HDU 5377 (Exgcd + 原根)
转载自:大牛 知道一个定理了 a ^ x = y (mod p) ===>> logd(a) * x = logd(y) (mod O(p) ) d 为 p 的 原根, O ...
- HDU 6051 If the starlight never fade(原根+推式子)
题目大意: 设\(f(i)\)为使\((x+y)^i \equiv x^i (mod\ p)\)成立的(x,y)的对数.其中\(1 \leq x \leq p-1 , 1\leq y\leq m\), ...
- hdu 4992 Primitive Roots 【求原根模板】
题目链接 大题流程: 判定是否有原根->求出最小原根->利用最小原根找出全部原根 #include<bits/stdc++.h> using namespace std; ty ...
- 数学--数论--HDU 2104 丢手绢(离散数学 mod N+ 剩余类 生成元)+(最大公约数)
The Children's Day has passed for some days .Has you remembered something happened at your childhood ...
- hdu4992 Primitive Roots(所有原根)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4992 题意:给出n,输出n的所有原根. 思路:求出n的一个原根x,那么对于所以的i,i<phi( ...
- hdu 4861 Couple doubi(数论)
题目链接:hdu 4861 Couple doubi 题目大意:两个人进行游戏,桌上有k个球,第i个球的值为1i+2i+⋯+(p−1)i%p,两个人轮流取,假设DouBiNan的值大的话就输出YES, ...
- HDU4992 求所有原根
Primitive Roots Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)T ...
随机推荐
- 《Linux内核与分析》第六周
20135130王川东 1.操作系统的三大管理功能包括:进程管理,内存管理,文件系统. 2. Linux内核通过唯一的进程标识PID来区别每个进程.为了管理进程,内核必须对每个进程进行清晰的描述,进程 ...
- 查看dll依赖项
win7 系统: 开始-->所有程序->vs2012文件夹->vs tools->对应的命令提示符 输入命令: dumpbin /dependents 你的文件(可以是exe, ...
- 《DWZ笔记一》<select>动态联动菜单
联动菜单,即组合框Combo box,在DWZ文档中对组合框combox的是这样描述的: 在传统的select 用class 定义:class=”combox”, html 扩展:保留原有属性name ...
- 【第四周】psp
代码累计 300+575+475+353=1603 随笔字数 1700+3000+3785+4210=12695 知识点 QT框架 Myeclipse基础环境 代码复用,封装 Ps技术 在excel画 ...
- (转)elasticsearch5.2.2 压测配置
1.elasticsearch.yml # ---------------------------------- Cluster ----------------------------------- ...
- [翻译]API Guides - Bound Services
官方文档原文地址:http://developer.android.com/guide/components/bound-services.html 一个Bound Service是一个客户端-服务器 ...
- 转载:理解OAuth 2.0
转载地址:http://www.ruanyifeng.com/blog/2014/05/oauth_2_0.html 作者: 阮一峰 日期: 2014年5月12日 OAuth是一个关于授权(autho ...
- libmnl
https://www.netfilter.org/projects/libmnl/doxygen/modules.html 1,tar xvf libmnl-1.0.4.tar.gz 2,cd li ...
- ARP(Adress Resolution Protocol): 地址解析协议
地址解析协议(Address Resolution Protoclol),其基本功能为通过目标设备的IP地址,查询目标设备的MAC地址,以保证通信的顺利.它是IPV4中网络层必不可少的协议.不过在IP ...
- shell脚本如何获取当前时间
在shell脚本里常常需要获取系统时间来处理某项操作,linux的系统时间在shell里是可以直接调用系统变量的如: 获取今天时期:`date +%Y%m%d` 或 `date +%F` 或 $(da ...