1. 生产者

import java.util.Properties; 

import kafka.javaapi.producer.Producer;
import kafka.producer.KeyedMessage;
import kafka.producer.ProducerConfig; public class MyProducer { public static void main(String[] args) {
Properties props = new Properties();
props.setProperty("metadata.broker.list","localhost:9092");
props.setProperty("serializer.class","kafka.serializer.StringEncoder");
props.put("request.required.acks","1");
ProducerConfig config = new ProducerConfig(props);
//创建生产这对象
Producer<String, String> producer = new Producer<String, String>(config);
//生成消息
KeyedMessage<String, String> data = new KeyedMessage<String, String>("mykafka","test-kafka");
try {
int i =1;
while(i < 100){
//发送消息
producer.send(data);
}
} catch (Exception e) {
e.printStackTrace();
}
producer.close();
}
}

2. 消费者

import java.util.HashMap;
import java.util.List;
import java.util.Map;
import java.util.Properties; import kafka.consumer.ConsumerConfig;
import kafka.consumer.ConsumerIterator;
import kafka.consumer.KafkaStream;
import kafka.javaapi.consumer.ConsumerConnector; public class MyConsumer extends Thread{
//消费者连接
private final ConsumerConnector consumer;
//要消费的话题
private final String topic; public MyConsumer(String topic) {
consumer =kafka.consumer.Consumer
.createJavaConsumerConnector(createConsumerConfig());
this.topic =topic;
} //配置相关信息
private static ConsumerConfig createConsumerConfig() {
Properties props = new Properties();
// props.put("zookeeper.connect","localhost:2181,10.XX.XX.XX:2181,10.XX.XX.XX:2181");
//配置要连接的zookeeper地址与端口
//The ‘zookeeper.connect’ string identifies where to find once instance of Zookeeper in your cluster.
//Kafka uses ZooKeeper to store offsets of messages consumed for a specific topic and partition by this Consumer Group
props.put("zookeeper.connect","localhost:2181"); //配置zookeeper的组id (The ‘group.id’ string defines the Consumer Group this process is consuming on behalf of.)
props.put("group.id", "0"); //配置zookeeper连接超时间隔
//The ‘zookeeper.session.timeout.ms’ is how many milliseconds Kafka will wait for
//ZooKeeper to respond to a request (read or write) before giving up and continuing to consume messages.
props.put("zookeeper.session.timeout.ms","10000"); //The ‘zookeeper.sync.time.ms’ is the number of milliseconds a ZooKeeper ‘follower’ can be behind the master before an error occurs.
props.put("zookeeper.sync.time.ms", "200"); //The ‘auto.commit.interval.ms’ setting is how often updates to the consumed offsets are written to ZooKeeper.
//Note that since the commit frequency is time based instead of # of messages consumed, if an error occurs between updates to ZooKeeper on restart you will get replayed messages.
props.put("auto.commit.interval.ms", "1000");
return new ConsumerConfig(props);
} public void run(){ Map<String,Integer> topickMap = new HashMap<String, Integer>();
topickMap.put(topic, 1);
Map<String, List<KafkaStream<byte[],byte[]>>> streamMap =consumer.createMessageStreams(topickMap); KafkaStream<byte[],byte[]>stream = streamMap.get(topic).get(0);
ConsumerIterator<byte[],byte[]> it =stream.iterator();
System.out.println("*********Results********");
while(true){
if(it.hasNext()){
//打印得到的消息
System.err.println(Thread.currentThread()+" get data:" +new String(it.next().message()));
}
try {
Thread.sleep(1000);
} catch (InterruptedException e) {
e.printStackTrace();
}
}
} public static void main(String[] args) {
MyConsumer consumerThread = new MyConsumer("mykafka");
consumerThread.start();
}
}

3. 消费者的线程执行器实现

  首先建立一个处理消息的类Consumer

import kafka.consumer.ConsumerIterator;
import kafka.consumer.KafkaStream;
public class Consumer implements Runnable { private KafkaStream stream;
private int threadNumber; public Consumer(KafkaStream a_stream, int a_threadNumber) {
threadNumber = a_threadNumber;
stream = a_stream;
} public void run() {
ConsumerIterator<byte[], byte[]> it = stream.iterator();
while (it.hasNext())
System.out.println("Thread " + threadNumber + ": " + new String(it.next().message()));
System.out.println("Shutting down Thread: " + threadNumber);
}
}

  其次实现多线程的调用

import kafka.consumer.ConsumerConfig;
import kafka.consumer.KafkaStream;
import kafka.javaapi.consumer.ConsumerConnector; import java.util.concurrent.*;
import java.util.HashMap;
import java.util.List;
import java.util.Map;
import java.util.Properties;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors; public class ConsumerGroup {
private final ConsumerConnector consumer;
private final String topic;
private ExecutorService executor; public ConsumerGroup(String a_zookeeper, String a_groupId, String a_topic) {
consumer = kafka.consumer.Consumer.createJavaConsumerConnector(
createConsumerConfig(a_zookeeper, a_groupId));
this.topic = a_topic;
} public void shutdown() {
if (consumer != null) consumer.shutdown();
if (executor != null) executor.shutdown();
try {
if (!executor.awaitTermination(5000, TimeUnit.MILLISECONDS)) {
System.out.println("Timed out waiting for consumer threads to shut down, exiting uncleanly");
}
} catch (InterruptedException e) {
System.out.println("Interrupted during shutdown, exiting uncleanly");
}
} public void run(int a_numThreads) {
Map<String, Integer> topicCountMap = new HashMap<String, Integer>();
topicCountMap.put(topic, new Integer(a_numThreads));
Map<String, List<KafkaStream<byte[], byte[]>>> consumerMap = consumer.createMessageStreams(topicCountMap);
List<KafkaStream<byte[], byte[]>> streams = consumerMap.get(topic); // now launch all the threads
//
executor = Executors.newFixedThreadPool(a_numThreads); // now create an object to consume the messages
//
int threadNumber = 0;
for (final KafkaStream stream : streams) {
executor.submit(new Consumer(stream, threadNumber));
threadNumber++;
}
} private static ConsumerConfig createConsumerConfig(String a_zookeeper, String a_groupId) {
Properties props = new Properties();
props.put("zookeeper.connect", a_zookeeper);
props.put("group.id", a_groupId);
props.put("zookeeper.session.timeout.ms", "400");
props.put("zookeeper.sync.time.ms", "200");
props.put("auto.commit.interval.ms", "1000"); return new ConsumerConfig(props);
} public static void main(String[] args) {
String zooKeeper = "localhost:2181";
String groupId = "0";
String topic = "mykafka";
int threads = 2; //启动的线程数 ConsumerGroup group = new ConsumerGroup(zooKeeper, groupId, topic);
group.run(threads); try {
Thread.sleep(10000);
} catch (InterruptedException ie) { }
group.shutdown();
}
}

kafka生产者、消费者java示例的更多相关文章

  1. Python 使用python-kafka类库开发kafka生产者&消费者&客户端

    使用python-kafka类库开发kafka生产者&消费者&客户端   By: 授客 QQ:1033553122       1.测试环境 python 3.4 zookeeper- ...

  2. kafka消息中间件及java示例

    kafka是一个消息中间件,用于各个系统之间传递消息,并且消息可持久化! 可以认为是队列模型,也可以看作是生产者消费着模型: 简单的生产者消费者客户端代码如下: package com.pt.util ...

  3. kafka 生产者消费者 api接口

    生产者 import java.util.Properties; import kafka.javaapi.producer.Producer; import kafka.producer.Keyed ...

  4. 经典线程同步问题(生产者&消费者)--Java实现

    生产者-消费者(producer-consumer)问题是一个著名的线程同步问题.它描述的是:有一群生产者线程在生产产品,并将这些产品提供给消费者线程去消费. 为使生产者与消费者之间能够并发执行,在两 ...

  5. Linux组件封装(五)一个生产者消费者问题示例

    生产者消费者问题是计算机中一类重要的模型,主要描述的是:生产者往缓冲区中放入产品.消费者取走产品.生产者和消费者指的可以是线程也可以是进程. 生产者消费者问题的难点在于: 为了缓冲区数据的安全性,一次 ...

  6. kafka集群搭建和使用Java写kafka生产者消费者

    1 kafka集群搭建 1.zookeeper集群  搭建在110, 111,112 2.kafka使用3个节点110, 111,112 修改配置文件config/server.properties ...

  7. java kafka 生产者消费者demo

    一.修改kafka   server.porperties的ip是你本机的ip listeners=PLAINTEXT://192.168.111.130:9092 二.生产者的例子 import o ...

  8. 生产者消费者-Java代码实现

    import java.util.LinkedList; class Storage{ private static final int MAX = 100; LinkedList<Object ...

  9. 生产者消费者 java.util.concurrent.lock包

    package com.mozq.thread.producer2; import java.util.concurrent.locks.Condition; import java.util.con ...

随机推荐

  1. tensorflow运行出现错误 : ImportError: Could not find 'cudart64_90.dll'.

    安装 tensorflow-gpu 版本后,需要安装相应的 CUDA 和 cuDNN 注意版本问题:tensorflow-gpu 1.7以及之后的版本要安装 CUDA 8.0 以上的版本,tf 1.7 ...

  2. Web前端开发最佳实践(1):前端开发概述

    引言 我从07年开始进入博客园,从最开始阅读别人的文章到自己开始尝试表达一些自己对技术的看法.可以说,博客园是我参与技术讨论的一个主要的平台.在这其间,随着接触技术的广度和深度的增加,也写了一些得到了 ...

  3. s12-day03-work01 python修改haproxy配置文件(初级版本)

    #!/usr/local/env python3 ''' Author:@南非波波 Blog:http://www.cnblogs.com/songqingbo/ E-mail:qingbo.song ...

  4. 七 oracle 表查询二

    1.使用逻辑操作符号问题:查询工资高于500或者是岗位为manager的雇员,同时还要满足他们的姓名首字母为大写的J?select * from emp where (sal > 500 or ...

  5. HDU 6025 Coprime Sequence

    枚举,预处理. 预处理前缀$gcd$与后缀$gcd$,枚举删哪一个即可. #include <bits/stdc++.h> using namespace std; int T,n; ]; ...

  6. HDU 6071 Lazy Running (同余最短路 dij)

    Lazy Running Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 524288/524288 K (Java/Others)To ...

  7. Linux_x64_Pwn溢出漏洞

    linux_64与linux_86的区别 linux_64与linux_86的区别主要有两点: 首先是内存地址的范围由32位变成了64位 但是可以使用的内存地址不能大于0x00007fffffffff ...

  8. java中Dao模式

    什么是DAO   1.Data Access Object(数据存取对象) 2.位于业务逻辑和持久化数据之间 3.实现对持久化数据的访问 DAO模式的作用 1隔离业务逻辑代码和数据访问代码 2.隔离不 ...

  9. 【Pollard-rho算法】【DFS】poj2429 GCD & LCM Inverse

    题意:给你一两个数m和n,它们分别是某对数A,B的gcd和lcm,让你求出一对使得A+B最小的A,B. n/m的所有质因子中,一定有一部分是只在A中的,另一部分是只在B中的. 于是对n/m质因子分解后 ...

  10. 使用百度ai接口加图灵机器人完成简单web版语音对话

    app文件 from flask import Flask, request, render_template, jsonify, send_file from uuid import uuid4 i ...