【BZOJ2120】数颜色(带修莫队)
大致题意: 告诉你\(n\)只蜡笔的颜色,有两种操作:第一种操作将第\(x\)只蜡笔颜色改成\(y\),第二种操作询问区间\([l,r]\)内有多少种颜色的蜡笔。
考虑普通莫队
这题目第一眼看上去感觉和【洛谷2709】小B的询问很像,然后就自然而然地会想到用莫队去做。
但是,在仔细想想,就会发现这道题中有修改,普通的莫队是做不了这样的题目的。
于是,我们就要用一种新的算法:带修莫队。
带修莫队
如果你会带修莫队,那么这题应该就是一道简单的板子题了。
对于每一个询问,记录下在这次询问前进行了几次修改。
而对于每一个修改,记录下当前修改元素修改前的值。
这样,就可以对于每一个询问,将没有执行的修改执行掉,将多执行的修改撤销掉即可。
代码
#include<bits/stdc++.h>
#define max(x,y) ((x)>(y)?(x):(y))
#define min(x,y) ((x)<(y)?(x):(y))
#define LL long long
#define swap(x,y) (x^=y,y^=x,x^=y)
#define tc() (A==B&&(B=(A=ff)+fread(ff,1,100000,stdin),A==B)?EOF:*A++)
#define pc(ch) (pp_<100000?pp[pp_++]=(ch):(fwrite(pp,1,100000,stdout),pp[(pp_=0)++]=(ch)))
#define N 50000
#define add(x,y) (e[++ee].nxt=lnk[x],e[lnk[x]=ee].to=y)
int pp_=0;char ff[100000],*A=ff,*B=ff,pp[100000];
using namespace std;
int n,m,blo,q_num,o_num,col[N+5],lst[N+5],pos[N+5],res[N+5],cnt[1000005];
struct Query//记录询问
{
int l,r,pos,k;//l和r记录询问区间,pos记录这个询问的编号,方便最后答案的输出,k记录这个询问前执行的操作数
}q[N+5];
struct Operation//记录操作
{
int x,y,z;//x记录修改的元素的编号,y记录要修改成的值,z记录修改前的值,方便撤销
}o[N+5];
inline void read(int &x)
{
x=0;static char ch;
while(!isdigit(ch=tc()));
while(x=(x<<3)+(x<<1)+ch-48,isdigit(ch=tc()));
}
inline void read_alpha(char &x)
{
while(!isalpha(x=tc()));
}
inline void write(int x)
{
if(x>9) write(x/10);
pc(x%10+'0');
}
inline bool cmp(Query x,Query y)//排序
{
if(pos[x.l]^pos[y.l]) return pos[x.l]<pos[y.l];//如果两个询问的l不在同一块内
if(pos[x.r]^pos[y.r]) return pos[x.r]<pos[y.r];//如果两个询问的r不在同一块内
return x.k<y.k;//比较两个询问执行操作的个数
}
int main()
{
register int i,j,x,y;register char ch;
for(read(n),read(m),blo=pow(n,2.0/3),i=1;i<=n;++i) read(col[i]),lst[i]=col[i],pos[i]=(i-1)/blo+1;
for(i=1;i<=m;++i)
{
read_alpha(ch),read(x),read(y);
if(ch^'R') q[++q_num].l=x,q[q_num].r=y,q[q[q_num].pos=q_num].k=o_num;
else o[++o_num].x=x,o[o_num].y=y,o[o_num].z=lst[x],lst[x]=y;
}
register int L=0,R=0,K=0,ans=0;//L和R记录当前答案的区间,K记录当前执行的操作数,ans记录当前的答案,初始化全为0
for(sort(q+1,q+q_num+1,cmp),i=1;i<=q_num;++i)
{
while(K<q[i].k)//如果当前执行的操作数少于当前询问执行的操作数
{
++K;
if(L<=o[K].x&&o[K].x<=R)//如果修改的点在L到R区间内
{
if(!--cnt[col[o[K].x]]) --ans;//如果删除了原先的颜色使得这种颜色的个数为0,那么将ans减1
if(!cnt[o[K].y]++) ++ans;//如果加上了新的颜色使得颜色个数增加了1,那么将ans加1
}
col[o[K].x]=o[K].y;//修改颜色
}
while(K>q[i].k)//如果当前执行掉操作数多余当前询问执行的操作数
{
if(L<=o[K].x&&o[K].x<=R)//如果修改的点在L到R区间内
{
if(!--cnt[col[o[K].x]]) --ans;//如上
if(!cnt[o[K].z]++) ++ans;//如上
}
col[o[K].x]=o[K].z,--K;//如上
}
while(R<q[i].r) if(!cnt[col[++R]]++) ++ans;//如果当前的R小于当前询问的r,那么将R向右移
while(L>q[i].l) if(!cnt[col[--L]]++) ++ans;//如果当前的L大于当前询问的l,那么将L向左移
while(R>q[i].r) if(!--cnt[col[R--]]) --ans;//如果当前的R大于当前询问的r,那么将R向左移
while(L<q[i].l) if(!--cnt[col[L++]]) --ans;//如果当前的L小于当前询问的l,那么将L向右移
res[q[i].pos]=ans;//记录答案
}
for(i=1;i<=q_num;++i) write(res[i]),pc('\n');
return fwrite(pp,1,pp_,stdout),0;
}
【BZOJ2120】数颜色(带修莫队)的更多相关文章
- bzoj2120 数颜色——带修莫队
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2120 带修改的莫队: 用结构体存下修改和询问,排好序保证时间后就全局移动修改即可: 参考了T ...
- bzoj2120: 数颜色 带修莫队
墨墨购买了一套N支彩色画笔(其中有些颜色可能相同),摆成一排,你需要回答墨墨的提问.墨墨会像你发布如下指令: 1. Q L R代表询问你从第L支画笔到第R支画笔中共有几种不同颜色的画笔. 2. R P ...
- BZOJ 2120 数颜色 (带修莫队)
2120: 数颜色 Time Limit: 6 Sec Memory Limit: 259 MBSubmit: 6367 Solved: 2537[Submit][Status][Discuss] ...
- bzoj 2120 数颜色 (带修莫队)
题目链接: https://www.lydsy.com/JudgeOnline/problem.php?id=2120 题意:两种操作:Q 询问区间 l - r 内颜色的种类 ,R 单点修改 思路 ...
- BZOJ2120数颜色(带修改莫队)
莫队算法是一种数据结构的根号复杂度替代品,主要应用在询问[l,r]到询问[l+1,r]和[l,r+1]这两个插入和删除操作复杂度都较低的情况下.具体思想是:如果把一个询问[l,r]看做平面上的点(l, ...
- 【bzoj2120】数颜色 带修莫队
数颜色 题目描述 墨墨购买了一套N支彩色画笔(其中有些颜色可能相同),摆成一排,你需要回答墨墨的提问.墨墨会像你发布如下指令: 1. Q L R代表询问你从第L支画笔到第R支画笔中共有几种不同颜色的画 ...
- [国家集训队][bzoj2120] 数颜色 [带修改莫队]
题面: 传送门 思路: 这道题和SDOI2009的HH的项链很像,只是多了一个修改 模板套上去呀 莫队学习请戳这里:莫队 Code: #include<iostream> #include ...
- BZOJ2120/洛谷P1903 [国家集训队] 数颜色 [带修改莫队]
BZOJ传送门:洛谷传送门 数颜色 题目描述 墨墨购买了一套N支彩色画笔(其中有些颜色可能相同),摆成一排,你需要回答墨墨的提问.墨墨会向你发布如下指令: 1. Q L R代表询问你从第L支画笔到第R ...
- NOI模拟 颜色 - 带修莫队/树套树
题意: 一个颜色序列,\(a_1, a_2, ...a_i\)表示第i个的颜色,给出每种颜色的美丽度\(w_i\),定义一段颜色的美丽值为该段颜色的美丽值之和(重复的只计算一次),每次都会修改某个位置 ...
- bzoj 2120 数颜色 带修改莫队
带修改莫队,每次查询前调整修改 #include<cstdio> #include<iostream> #include<cstring> #include< ...
随机推荐
- 使用js页面添加或删除标签
// 添加var container = document.getElementById('divAudio');container.appendChild(audio); // 删除var cont ...
- 关于unique去重
嗯.... unique这个东西也是一个冷门知识..... 但是在有时候它还是比较好用的东西... 下面就在详细代码中看unique是如何实际应用的....它主要是用于数组去重 #include< ...
- IIS上部署网站问题总结
主要是对使用IIS过程遇到的问题的一些简单总结: 1. 当部署完web系统后,通过浏览器访问,如果遇到问题,一定要仔细阅读抛出来的error信息,很重要!很重要!很重要!说三遍. 2. 当每次尝试修改 ...
- sql 查找重复数据,并且重复数据有子集
SELECT A.* FROM comm_department A INNER JOIN ( select path,count(*) as count from comm_department gr ...
- Decorator模式(装饰器模式)
Decorator模式? 假如现在有一块蛋糕,如果只涂上奶油,其他什么都不加,就是奶油蛋糕.如果加上草莓,就是草莓奶油蛋糕.如果再加上一块黑色巧克力板,上面用白色巧克力写上姓名,然后插上代表年龄的蜡烛 ...
- Nim && Grundy (基础博弈游戏 )
通常的Nim游戏的定义是这样的:有若干堆石子,每堆石子的数量都是有限的,合法的移动是“选择一堆石子并拿走若干颗(不能不拿)”,如果轮到某个人时所有的石子堆都已经被拿空了,则判负(因为他此刻没有任何合法 ...
- 转 Mindoc搭建流程 文档多人编辑工具。
安装方法参考: https://www.yuanmas.com/info/1bz9Y126zx.html https://www.iminho.me/version.html #step 1,安装My ...
- mac终端快捷键
mac终端快捷键: http://www.jianshu.com/p/e6c364084c22
- var obj = eval(result); 解析json
l var obj = eval(result);解析json
- Java关键字和基础问题
1. Java关键字 1.1 extends和implements extends继承普通class或abstract(抽象)类(java单继承) implements多继承能力,实现interfac ...