kaggle Pipelines
# Most scikit-learn objects are either transformers or models.
# Transformers are for pre-processing before modeling. The Imputer class (for filling in missing values) is an example of a transformer. # Over time, you will learn many more transformers, and you will frequently use multiple transformers sequentially.
# Models are used to make predictions. You will usually preprocess your data (with transformers) before putting it in a model.
# You can tell if an object is a transformer or a model by how you apply it. After fitting a transformer, you apply it with the transform # command. After fitting a model, you apply it with the predict command. Your pipeline must start with transformer steps and end with a # model. This is what you'd want anyway.
# Eventually you will want to apply more transformers and combine them more flexibly. We will cover this later in an Advanced Pipelines # tutorial.
import pandas as pd
from sklearn.model_selection import train_test_split # Read Data
data = pd.read_csv('../input/melb_data.csv')
cols_to_use = ['Rooms', 'Distance', 'Landsize', 'BuildingArea', 'YearBuilt']
X = data[cols_to_use]
y = data.Price
train_X, test_X, train_y, test_y = train_test_split(X, y) from sklearn.ensemble import RandomForestRegressor
from sklearn.pipeline import make_pipeline
from sklearn.preprocessing import Imputer my_pipeline = make_pipeline(Imputer(), RandomForestRegressor())
my_pipeline.fit(train_X, train_y)
predictions = my_pipeline.predict(test_X)
kaggle Pipelines的更多相关文章
- [干货]Kaggle热门 | 用一个框架解决所有机器学习难题
新智元推荐 来源:LinkedIn 作者:Abhishek Thakur 译者:弗格森 [新智元导读]本文是数据科学家Abhishek Thakur发表的Kaggle热门文章.作者总结了自己参加100 ...
- kaggle入门2——改进特征
1:改进我们的特征 在上一个任务中,我们完成了我们在Kaggle上一个机器学习比赛的第一个比赛提交泰坦尼克号:灾难中的机器学习. 可是我们提交的分数并不是非常高.有三种主要的方法可以让我们能够提高他: ...
- Nancy之Pipelines三兄弟(Before After OnError)
一.简单描述 Before:如果返回null,拦截器将主动权转给路由:如果返回Response对象,则路由不起作用. After : 没有返回值,可以在这里修改或替换当前的Response. OnEr ...
- Kaggle入门教程
此为中文翻译版 1:竞赛 我们将学习如何为Kaggle竞赛生成一个提交答案(submisson).Kaggle是一个你通过完成算法和全世界机器学习从业者进行竞赛的网站.如果你的算法精度是给出数据集中最 ...
- 如何使用Python在Kaggle竞赛中成为Top15
如何使用Python在Kaggle竞赛中成为Top15 Kaggle比赛是一个学习数据科学和投资时间的非常的方式,我自己通过Kaggle学习到了很多数据科学的概念和思想,在我学习编程之后的几个月就开始 ...
- kaggle实战记录 =>Digit Recognizer
date:2016-09-13 今天开始注册了kaggle,从digit recognizer开始学习, 由于是第一个案例对于整个流程目前我还不够了解,首先了解大神是怎么运行怎么构思,然后模仿.这样的 ...
- kaggle数据挖掘竞赛初步--Titanic<原始数据分析&缺失值处理>
Titanic是kaggle上的一道just for fun的题,没有奖金,但是数据整洁,拿来练手最好不过啦. 这道题给的数据是泰坦尼克号上的乘客的信息,预测乘客是否幸存.这是个二元分类的机器学习问题 ...
- kaggle& titanic代码
这两天报名参加了阿里天池的’公交线路客流预测‘赛,就顺便先把以前看的kaggle的titanic的训练赛代码在熟悉下数据的一些处理.题目根据titanic乘客的信息来预测乘客的生还情况.给了titan ...
- kaggle 竞赛之套路
图片数据:卷积还是王道,有几个比较通用性的框架被人拿来改来改去 非图片特征数据:用分类: boost系列算法:牛逼的框架实现 xgboost AdaBoost算法针对不同的训练集训练同一个基本分类器( ...
随机推荐
- LeetCode LFU Cache
原题链接在这里:https://leetcode.com/problems/lfu-cache/?tab=Description 题目: Design and implement a data str ...
- ACM学习历程—HDU5696 区间的价值(分治 && RMQ && 线段树 && 动态规划)
http://acm.hdu.edu.cn/showproblem.php?pid=5696 这是这次百度之星初赛2B的第一题,但是由于正好打省赛,于是便错过了.加上2A的时候差了一题,当时有思路,但 ...
- SQL Server 学习系列之六
SQL Server 学习系列之六 SQL Server 学习系列之一(薪酬方案+基础) SQL Server 学习系列之二(日期格式问题) SQL Server 学习系列之三(SQL 关键字) SQ ...
- BZOJ4358:permu
浅谈\(K-D\) \(Tree\):https://www.cnblogs.com/AKMer/p/10387266.html 题目传送门:https://lydsy.com/JudgeOnline ...
- BZOJ3141:[HNOI2013]旅行
浅谈队列:https://www.cnblogs.com/AKMer/p/10314965.html 题目传送门:https://www.lydsy.com/JudgeOnline/problem.p ...
- 开启 intel vt-d
1.开机后按“DEL”或“F2”进入BIOS: 2.在Advanced选项页中找到System Agent Configuration并选择进入: 3.进入System Agent Configura ...
- 四川第七届 E Rectangle
Rectangle frog has a piece of paper divided into nn rows and mm columns. Today, she would like to dr ...
- final,finally和finalize三者的区别和联系
对于初学者而言(当然也包括我)对于这三者真的不是很陌生,经常会看到它们.但对于三者之间的区别和联系一直是懵懵懂~~ 今天心情不错,那就简单总结一下它们几个的区别和联系吧.如果又不对的地方欢迎批评指正~ ...
- java 多线程系列基础篇(五)之线程等待与唤醒
1.wait(), notify(), notifyAll()等方法介绍 在Object.java中,定义了wait(), notify()和notifyAll()等接口.wait()的作用是让当前线 ...
- oracle——pl/sql 查询中文乱码
1.查看服务器端编码select userenv('language') from dual;我实际查到的结果为:AMERICAN_AMERICA.AL32UTF82.执行语句 select * fr ...