++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

给定一个二叉树,返回他的前序遍历的节点的values。

例如:

给定一个二叉树 {1,#,2,3},

   1
\
2
/
3

返回 [1,2,3].

笔记:

递归解决方案是微不足道的,你可以用迭代的方法吗?

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

Given a binary tree, return the preorder traversal of its nodes' values.

For example:
Given binary tree {1,#,2,3},

   1
\
2
/
3

return [1,2,3].

Note: Recursive solution is trivial, could you do it iteratively?

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
1.递归实现
test.cpp:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
 
#include <iostream>
#include <cstdio>
#include <stack>
#include <vector>
#include "BinaryTree.h"

using namespace std;

void preorder(TreeNode *root, vector<int> &path)
{
    if(root != NULL)
    {
        path.push_back(root->val);
        preorder(root->left, path);
        preorder(root->right, path);
    }
}
vector<int> preorderTraversal(TreeNode *root)
{
    vector<int> path;
    preorder(root, path);
    return path;
}

// 树中结点含有分叉,
//                  8
//              /       \
//             6         1
//           /   \
//          9     2
//               / \
//              4   7
int main()
{
    TreeNode *pNodeA1 = CreateBinaryTreeNode(8);
    TreeNode *pNodeA2 = CreateBinaryTreeNode(6);
    TreeNode *pNodeA3 = CreateBinaryTreeNode(1);
    TreeNode *pNodeA4 = CreateBinaryTreeNode(9);
    TreeNode *pNodeA5 = CreateBinaryTreeNode(2);
    TreeNode *pNodeA6 = CreateBinaryTreeNode(4);
    TreeNode *pNodeA7 = CreateBinaryTreeNode(7);

ConnectTreeNodes(pNodeA1, pNodeA2, pNodeA3);
    ConnectTreeNodes(pNodeA2, pNodeA4, pNodeA5);
    ConnectTreeNodes(pNodeA5, pNodeA6, pNodeA7);

PrintTree(pNodeA1);

vector<int> ans = preorderTraversal(pNodeA1);

for (int i = 0; i < ans.size(); ++i)
    {
        cout << ans[i] << " ";
    }
    cout << endl;

DestroyTree(pNodeA1);
    return 0;
}

 输出结果:
8 6 9 2 4 7 1
 

2.非递归实现(迭代实现)

根据前序遍历访问的顺序,优先访问根结点,然后再分别访问左孩子和右孩子。即对于任一结点,其可看做是根结点,因此可以直接访问,访问完之后,若其左孩子不为空,按相同规则访问它的左子树;当访问其左子树时,再访问它的右子树。因此其处理过程如下:

对于任一结点P:

1)访问结点P,并将结点P入栈;

2)判断结点P的左孩子是否为空,若为空,则取栈顶结点并进行出栈操作,并将栈顶结点的右孩子置为当前的结点P,循环至1);若不为空,则将P的左孩子置为当前的结点P;

3)直到P为NULL并且栈为空,则遍历结束。

test.cpp:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
 
#include <iostream>
#include <cstdio>
#include <stack>
#include <vector>
#include "BinaryTree.h"

using namespace std;

//非递归前序遍历
vector<int> preorderTraversal(TreeNode *root)
{
    stack<TreeNode *> s;
    vector<int> path;
    TreeNode *p = root;
    while(p != NULL || !s.empty())
    {
        while(p != NULL)
        {
            path.push_back(p->val);
            s.push(p);
            p = p->left;
        }
        if(!s.empty())
        {
            p = s.top();
            s.pop();
            p = p->right;
        }
    }
    return path;
}

// 树中结点含有分叉,
//                  8
//              /       \
//             6         1
//           /   \
//          9     2
//               / \
//              4   7
int main()
{
    TreeNode *pNodeA1 = CreateBinaryTreeNode(8);
    TreeNode *pNodeA2 = CreateBinaryTreeNode(6);
    TreeNode *pNodeA3 = CreateBinaryTreeNode(1);
    TreeNode *pNodeA4 = CreateBinaryTreeNode(9);
    TreeNode *pNodeA5 = CreateBinaryTreeNode(2);
    TreeNode *pNodeA6 = CreateBinaryTreeNode(4);
    TreeNode *pNodeA7 = CreateBinaryTreeNode(7);

ConnectTreeNodes(pNodeA1, pNodeA2, pNodeA3);
    ConnectTreeNodes(pNodeA2, pNodeA4, pNodeA5);
    ConnectTreeNodes(pNodeA5, pNodeA6, pNodeA7);

PrintTree(pNodeA1);

vector<int> ans = preorderTraversal(pNodeA1);

for (int i = 0; i < ans.size(); ++i)
    {
        cout << ans[i] << " ";
    }
    cout << endl;

DestroyTree(pNodeA1);
    return 0;
}

输出结果:

8 6 9 2 4 7 1
 
BinaryTree.h:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
 
#ifndef _BINARY_TREE_H_
#define _BINARY_TREE_H_

struct TreeNode
{
    int val;
    TreeNode *left;
    TreeNode *right;
    TreeNode(int x) : val(x), left(NULL), right(NULL) {}
};

TreeNode *CreateBinaryTreeNode(int value);
void ConnectTreeNodes(TreeNode *pParent,
                      TreeNode *pLeft, TreeNode *pRight);
void PrintTreeNode(TreeNode *pNode);
void PrintTree(TreeNode *pRoot);
void DestroyTree(TreeNode *pRoot);

#endif /*_BINARY_TREE_H_*/

BinaryTree.cpp:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
 
#include <iostream>
#include <cstdio>
#include "BinaryTree.h"

using namespace std;

/**
 * Definition for binary tree
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode(int x) : val(x), left(NULL), right(NULL) {}
 * };
 */

//创建结点
TreeNode *CreateBinaryTreeNode(int value)
{
    TreeNode *pNode = new TreeNode(value);

return pNode;
}

//连接结点
void ConnectTreeNodes(TreeNode *pParent, TreeNode *pLeft, TreeNode *pRight)
{
    if(pParent != NULL)
    {
        pParent->left = pLeft;
        pParent->right = pRight;
    }
}

//打印节点内容以及左右子结点内容
void PrintTreeNode(TreeNode *pNode)
{
    if(pNode != NULL)
    {
        printf("value of this node is: %d\n", pNode->val);

if(pNode->left != NULL)
            printf("value of its left child is: %d.\n", pNode->left->val);
        else
            printf("left child is null.\n");

if(pNode->right != NULL)
            printf("value of its right child is: %d.\n", pNode->right->val);
        else
            printf("right child is null.\n");
    }
    else
    {
        printf("this node is null.\n");
    }

printf("\n");
}

//前序遍历递归方法打印结点内容
void PrintTree(TreeNode *pRoot)
{
    PrintTreeNode(pRoot);

if(pRoot != NULL)
    {
        if(pRoot->left != NULL)
            PrintTree(pRoot->left);

if(pRoot->right != NULL)
            PrintTree(pRoot->right);
    }
}

void DestroyTree(TreeNode *pRoot)
{
    if(pRoot != NULL)
    {
        TreeNode *pLeft = pRoot->left;
        TreeNode *pRight = pRoot->right;

delete pRoot;
        pRoot = NULL;

DestroyTree(pLeft);
        DestroyTree(pRight);
    }
}

 
 
 

【遍历二叉树】01二叉树的前序遍历【Binary Tree Preorder Traversal】的更多相关文章

  1. LeetCode 144. 二叉树的前序遍历(Binary Tree Preorder Traversal)

    144. 二叉树的前序遍历 144. Binary Tree Preorder Traversal 题目描述 给定一个二叉树,返回它的 前序 遍历. LeetCode144. Binary Tree ...

  2. 二叉树前序、中序、后序非递归遍历 144. Binary Tree Preorder Traversal 、 94. Binary Tree Inorder Traversal 、145. Binary Tree Postorder Traversal 、173. Binary Search Tree Iterator

    144. Binary Tree Preorder Traversal 前序的非递归遍历:用堆来实现 如果把这个代码改成先向堆存储左节点再存储右节点,就变成了每一行从右向左打印 如果用队列替代堆,并且 ...

  3. C++版 - LeetCode 144. Binary Tree Preorder Traversal (二叉树先根序遍历,非递归)

    144. Binary Tree Preorder Traversal Difficulty: Medium Given a binary tree, return the preorder trav ...

  4. 3月3日(3) Binary Tree Preorder Traversal

    原题 Binary Tree Preorder Traversal 没什么好说的... 二叉树的前序遍历,当然如果我一样忘记了什么是前序遍历的..  啊啊.. 总之,前序.中序.后序,是按照根的位置来 ...

  5. Binary Tree Preorder Traversal on LeetCode in Java

    二叉树的非递归前序遍历,大抵是很多人信手拈来.不屑一顾的题目罢.然而因为本人记性不好.基础太差的缘故,做这道题的时候居然自己琢磨出了一种解法,虽然谈不上创新,但简单一搜也未发现雷同,权且记录,希望于人 ...

  6. 【LeetCode】Binary Tree Preorder Traversal

    Binary Tree Preorder Traversal Given a binary tree, return the preorder traversal of its nodes' valu ...

  7. 12. Binary Tree Postorder Traversal && Binary Tree Preorder Traversal

    详见:剑指 Offer 题目汇总索引:第6题 Binary Tree Postorder Traversal            Given a binary tree, return the po ...

  8. 55. Binary Tree Preorder Traversal

    Binary Tree Preorder Traversal My Submissions QuestionEditorial Solution Total Accepted: 119655 Tota ...

  9. Binary Tree Preorder Traversal and Binary Tree Postorder Traversal

    Binary Tree Preorder Traversal Given a binary tree, return the preorder traversal of its nodes' valu ...

  10. 【LeetCode】144. Binary Tree Preorder Traversal (3 solutions)

    Binary Tree Preorder Traversal Given a binary tree, return the preorder traversal of its nodes' valu ...

随机推荐

  1. thinkPHP5.0的学习研究【序言】

    2017年6月19日13:19:151.ThinkPHP V5.0——为API开发而设计的高性能框架2.ThinkPHP是一个免费开源的,快速.简单的面向对象的轻量级PHP开发框架,是为了敏捷WEB应 ...

  2. tomcat 编码问题

    默认情况下,tomcat使用的的编码方式:iso8859-1 修改tomcat下的conf/server.xml文件 找到如下代码:    < Connector port="8080 ...

  3. git reset和git revert

    1 git reset commit-id 直接回到某次提交,该次commit-id之后的提交都会被删除. --hard,将index和本地都恢复到指定的commit版本. 2 git revert ...

  4. 【python】-- Socket粘包问题 ,解决粘包的几种方法、socket文件下载,md5值检验

    上一篇随笔:“socket 接收大数据”,在win系统上能够运行,并且解决了大数据量的数据传输出现的问题,但是运行在linux系统上就会出现如下图所示的情况: 就是服务端两次发送给客户端的数据(第一次 ...

  5. 【JavaScript专题】--- 立即执行函数表达式

    一 什么是立即执行函数表达式 立即执行函数表达式,其实也可以叫初始化函数表达式,英文名:IIFE,immediately-inovked-function expression.立即执行函数表达式就是 ...

  6. 教你使用SQL查询(1-12)

    教你使用 Select 查询语句 (1) SELECT 语句基本语法简介 http://jimshu.blog.51cto.com/3171847/1363101(2) TOP 和 OFFSET 筛选 ...

  7. 如何下载symfony

    php -r "readfile('https://symfony.com/installer');" > symfony 可能无法下载,:那么你检查一下你的php.ini找 ...

  8. cordova 获取地理位置

    第一步,引入插件 cordova plugin add cordova-plugin-geolocation 第二步, <!DOCTYPE html> <html> <h ...

  9. 只需两步删除 node_modules

    peng@PENG-PC /E/_My_File_____/home/learn/web_qianduan/mithril-demo/demo2/mithril -demo $ npm install ...

  10. 路由器桥接(WIFI无线中继)设置及摆放位置图解

    路由器桥接(WIFI无线中继)设置及摆放位置图解 WIFI实在好用,但它的波覆盖面小.穿透力很差.我们安装时要考虑波的衍射特点,装在衍射效果最佳的位置(居中,室外可绕,避开密封墙).确实无法兼顾的地方 ...