机器学习(十七)— SVD奇异值分解
奇异值分解(Singular Value Decomposition,以下简称SVD)是在机器学习领域广泛应用的算法,它不光可以用于降维算法中的特征分解,还可以用于推荐系统,以及自然语言处理等领域。是很多机器学习算法的基石。本文就对SVD的原理做一个总结,并讨论在在PCA降维算法中是如何运用运用SVD的。
1、基本原理


对于奇异值,它跟我们特征分解中的特征值类似,在奇异值矩阵中也是按照从大到小排列,而且奇异值的减少特别的快,在很多情况下,前10%甚至1%的奇异值的和就占了全部的奇异值之和的99%以上的比例。也就是说,我们也可以用最大的k个的奇异值和对应的左右奇异向量来近似描述矩阵。
对于这个重要的性质,SVD可以用于PCA降维,来做数据压缩和去噪。也可以用于推荐算法,将用户和喜好对应的矩阵做特征分解,进而得到隐含的用户需求来做推荐。同时也可以用于NLP中的算法,比如潜在语义索引(LSI)

2、SVD用于PCA
注意到我们的SVD也可以得到协方差矩阵XTX最大的d个特征向量张成的矩阵,但是SVD有个好处,有一些SVD的实现算法可以不求先求出协方差矩阵XTX,也能求出我们的右奇异矩阵V。也就是说,我们的PCA算法可以不用做特征分解,而是做SVD来完成。这个方法在样本量很大的时候很有效。实际上,scikit-learn的PCA算法的背后真正的实现就是用的SVD,而不是我们我们认为的暴力特征分解。
左奇异矩阵可以用于行数的压缩。相对的,右奇异矩阵可以用于列数即特征维度的压缩,也就是我们的PCA降维。
在大数据时代,SVD可以并行化,但 SVD的缺点是分解出的矩阵解释性往往不强,有点黑盒子的味道,不过这不影响它的使用。
参考:http://www.cnblogs.com/pinard/p/6251584.html
机器学习(十七)— SVD奇异值分解的更多相关文章
- 简单易学的机器学习算法—SVD奇异值分解
简单易学的机器学习算法-SVD奇异值分解 一.SVD奇异值分解的定义 假设M是一个的矩阵,如果存在一个分解: 其中的酉矩阵,的半正定对角矩阵,的共轭转置矩阵,且为的酉矩阵.这样的分解称为M的奇 ...
- 机器学习降维--SVD奇异值分解
奇异值分解是有着很明显的物理意义,将一个比较复杂的矩阵用更小更简单的几个子矩阵的相乘来表示,这些小矩阵描述的是矩阵的重要的特性,让机器学会抽取重要的特征,SVD是一个重要的方法. 所以SVD不仅是一个 ...
- [机器学习]-SVD奇异值分解的基本原理和运用
SVD奇异值分解: SVD是一种可靠的正交矩阵分解法.可以把A矩阵分解成U,∑,VT三个矩阵相乘的形式.(Svd(A)=[U*∑*VT],A不必是方阵,U,VT必定是正交阵,S是对角阵<以奇异值 ...
- SVD奇异值分解的基本原理和运用
SVD奇异值分解: SVD是一种可靠的正交矩阵分解法.可以把A矩阵分解成U,∑,VT三个矩阵相乘的形式.(Svd(A)=[U*∑*VT],A不必是方阵,U,VT必定是正交阵,S是对角阵<以奇异值 ...
- SVD奇异值分解的几何物理意义资料汇总
学习SVD奇异值分解的网上资料汇总: 1. 关于svd的一篇概念文,这篇文章也是后续几篇文章的鼻祖~ http://www.ams.org/samplings/feature-column/fcarc ...
- 机器学习之SVD分解
一.SVD奇异值分解的定义 假设是一个的矩阵,如果存在一个分解: 其中为的酉矩阵,为的半正定对角矩阵,为的共轭转置矩阵,且为的酉矩阵.这样的分解称为的奇异值分解,对角线上的元素称为奇异值,称为左奇异矩 ...
- 『科学计算_理论』SVD奇异值分解
转载请声明出处 SVD奇异值分解概述 SVD不仅是一个数学问题,在工程应用中的很多地方都有它的身影,比如前面讲的PCA,掌握了SVD原理后再去看PCA那是相当简单的,在推荐系统方面,SVD更是名声大噪 ...
- Python机器学习笔记:奇异值分解(SVD)算法
完整代码及其数据,请移步小编的GitHub 传送门:请点击我 如果点击有误:https://github.com/LeBron-Jian/MachineLearningNote 奇异值分解(Singu ...
- 机器学习基础:奇异值分解(SVD)
SVD 原理 奇异值分解(Singular Value Decomposition)是线性代数中一种重要的矩阵分解,也是在机器学习领域广泛应用的算法,它不光可以用于降维算法中的特征分解,还可以用于推荐 ...
随机推荐
- iOS左滑手势失效
iOS7之后,苹果优化了一个小功能,就是对于UINavagationController堆栈里的UIViewController,只要轻轻在视图控制器的左边缘右滑一下,该视图控制器就会pop出栈(前提 ...
- Jenkins+GitHub+Xcode+fir搭了一个持续集成环境
enkins+GitHub+Xcode+fir搭了一个持续集成环境 字数826 阅读5699 评论44 喜欢49 原文链接 Coding Duck 今天用Jenkins+GitHub+Xcode+fi ...
- dedecms织梦如何调用指定的多个栏目导航
{dede:channelartlist row='2' typeid='1,2这里输入多个指定的栏目ID' } <li><a href='{dede:field name='typ ...
- named主从环境部署
named主 1. bind服务安装配置 yum -y install bind*.x86_64 配置文件: /etc/named.conf /etc/named.rfc1912.zones /etc ...
- Java NIO —— Buffer(缓冲区)
Buffer是一个抽象类,位于java.nio包中,主要用作缓冲区.注意:Buffer是非线程安全类. 缓冲区本质上是一块可以写入数据,然后可以从中读取数据的内存.这块内存被包装成NIO Buffer ...
- Unity Texture2D的sRGB(Color Texture)的作用
在gramma空间下,勾选与否无关. 在liner空间下,勾选shader会自动将读到的像素作gramma矫正,即x的0.45次方 不勾选,shader读到的就是原始的颜色值 然后unity如果选了g ...
- bugzilla部署记录
这两天部署了个bugzilla,记录如下. 1.主要参考文章 Bugzilla安装过程.Bugzilla使用手册及解决方案 如果你使用的系统是win7或者IIS是7.0的话,你可能还需要Win7 安装 ...
- 与webView进行交互,webView小记
本文转载至 http://www.verydemo.com/demo_c101_i46895.html 一.与webView进行交互,调用web页面中的需要传参的函数时,参数需要带单引号,或者双引号( ...
- hdu3293(pell方程+快速幂)
裸的pell方程. 然后加个快速幂. No more tricks, Mr Nanguo Time Limit: 3000/1000 MS (Java/Others) Memory Limit: ...
- php 写入数据库时Call to a member function bind_param() on a non-object
<?php $servername = "localhost"; $username = "username"; $password = "pa ...