看完题目后,题目要求:

设时间为t

(x+mt)%L = (y+nt)%L

( x-y + (m-n)*t )= k*L (k是整数,可为负)

然后就是经典的

xa+yb=c 求解x,y的经典题目了。

/*

xa+yb=c

先求 xa+yb=gcd(a,b)

如果c%gcd(a,b)不为0,则没有整数解

求出x0,y0后,

x0 *= c/gcd(a,b)

y0 *= c/gcd(a,b)

即为xa+yb = c 的一组解。

怎么求所有解呢, 求出xa+yb=0

x = sx* b/gcd(a,b)

y = sy* -a/gcd(a,b)

因为整个方程是对L取模的,对应的也就是b取模,所以sy可以任意取。

设s=b/gcd(a,b)

则x0的最小正整数解为: (x0%s+s)%s

*/

最后在所有解t中找出一个最小正整数。

青蛙的约会
Time Limit: 1000MS   Memory Limit: 10000K
Total Submissions: 100349   Accepted: 19268

Description

两 只青蛙在网上相识了,它们聊得很开心,于是觉得很有必要见一面。它们很高兴地发现它们住在同一条纬度线上,于是它们约定各自朝西跳,直到碰面为止。可是它 们出发之前忘记了一件很重要的事情,既没有问清楚对方的特征,也没有约定见面的具体位置。不过青蛙们都是很乐观的,它们觉得只要一直朝着某个方向跳下去, 总能碰到对方的。但是除非这两只青蛙在同一时间跳到同一点上,不然是永远都不可能碰面的。为了帮助这两只乐观的青蛙,你被要求写一个程序来判断这两只青蛙 是否能够碰面,会在什么时候碰面。
我们把这两只青蛙分别叫做青蛙A和青蛙B,并且规定纬度线上东经0度处为原点,由东往西为正方向,单位长度1米,这样我们就得到了一条首尾相接的
数轴。设青蛙A的出发点坐标是x,青蛙B的出发点坐标是y。青蛙A一次能跳m米,青蛙B一次能跳n米,两只青蛙跳一次所花费的时间相同。纬度线总长L米。
现在要你求出它们跳了几次以后才会碰面。

Input

输入只包括一行5个整数x,y,m,n,L,其中x≠y < 2000000000,0 < m、n < 2000000000,0 < L < 2100000000。

Output

输出碰面所需要的跳跃次数,如果永远不可能碰面则输出一行"Impossible"

Sample Input

1 2 3 4 5

Sample Output

4
#include <iostream>
#include <stdio.h>
#include <string.h>
#include <algorithm>
#include <string>
#include <math.h>
#include <stdlib.h>
using namespace std; typedef long long ll; void extendgcd(ll a,ll b,long long &x,long long &y)
{
    if(a%b==0)
    {
        //到了终止条件
        x=0; y=1;
        return ;
    }
    extendgcd(b,a%b,x,y);
    long long tmpx;
    tmpx=y;
    y=x-(a/b)*y;
    x=tmpx;
}
long long GCD(long long a,long long b)
{
    if(b==0) return a;
    return GCD(b,a%b);
} int main()
{
    ll x,y,m,n,l;
    while(cin>>x>>y>>m>>n>>l)
    {
        x%=l;
        y%=l;         if(m==n)
        {
            printf("Impossible\n");
            continue;
        }
        ll R,P;
        if(m>n)
        {
            R = m-n;
            P = y-x;
        }
        else
        {
            R = n-m;
            P = x-y;
        }
        ll gcd = GCD(R,l);         if(P%gcd != 0)
        {
            printf("Impossible\n");
            continue;
        }
        ll k0,t0;
        extendgcd(l,R,k0,t0);
        t0 *= (P/gcd);
        ll s=l/gcd;
        cout << (t0%s+s)%s<<endl;
    }
    return 0;
}

poj1061(extendgcd)的更多相关文章

  1. 欧几里德&扩展以及求解线性方程学习总结--附上poj1061解题报告

    欧几里德算法: 欧几里德就是辗转相除法,调用这个gcd(a,b)这个函数求解a,b的最大公约数 公式: gcd(a,b)=gcd(b,a%b):并且gcd(a,b)=gcd(b,a)=gcd(-a,b ...

  2. POJ-1061 青蛙的约会---扩展欧几里得算法

    题目链接: https://cn.vjudge.net/problem/POJ-1061 题目大意: 两只青蛙在网上相识了,它们聊得很开心,于是觉得很有必要见一面.它们很高兴地发现它们住在同一条纬度线 ...

  3. [POJ1845&POJ1061]扩展欧几里得应用两例

    扩展欧几里得是用于求解不定方程.线性同余方程和乘法逆元的常用算法. 下面是代码: function Euclid(a,b:int64;var x,y:int64):int64; var t:int64 ...

  4. extendgcd模板

    看了数论第一章,终于搞懂了扩展欧几里德,其实就是普通欧几里德的逆推过程. // ax+by = gcd(a,b) ->求解x,y 其中a,b不全为0,可以为负数// 复杂度:O(log2a)vo ...

  5. POJ1061 青蛙的约会 —— 扩展gcd

    题目链接:https://vjudge.net/problem/POJ-1061 青蛙的约会 Time Limit: 1000MS   Memory Limit: 10000K Total Submi ...

  6. poj1061(扩展欧基里德定理)

    题目链接:https://vjudge.net/problem/POJ-1061 题意:在一个首位相接的坐标轴上,A.B开始时分别位于X,Y处,每个单位时间向右移动m,n米,问是否能相遇,坐标轴长L. ...

  7. POJ1061青蛙的约会[扩展欧几里得]

    青蛙的约会 Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 108911   Accepted: 21866 Descript ...

  8. 【poj1061】 青蛙的约会

    http://poj.org/problem?id=1061 (题目链接) 题意 两只青蛙在周长为L的球上沿一条直线向一个方向跳,每只每次分别跳m,n米,它们一开始分别在X,Y处,问跳几次两青蛙可以在 ...

  9. POJ1061 青蛙的约会

    Description 两 只青蛙在网上相识了,它们聊得很开心,于是觉得很有必要见一面.它们很高兴地发现它们住在同一条纬度线上,于是它们约定各自朝西跳,直到碰面为止.可是它 们出发之前忘记了一件很重要 ...

随机推荐

  1. IntelliJ IDEA和pycharm注册码

    BIG3CLIK6F-eyJsaWNlbnNlSWQiOiJCSUczQ0xJSzZGIiwibGljZW5zZWVOYW1lIjoibGFuIHl1IiwiYXNzaWduZWVOYW1lIjoiI ...

  2. STL 源码分析 (SGI版本, 侯捷著)

    前言 源码之前,了无秘密 algorithm的重要性 效率的重要性 采用Cygnus C++ 2.91 for windows cygwin-b20.1-full2.exe 下载地址:http://d ...

  3. 2017.8.5 VMware的介绍与安装

    1 VMware简介 官网地址:http://www.vmware.com VMware的功能: 是一个虚拟PC的软件,可以在现有的操作系统上虚拟出一个新的硬件环境,相当于模拟出一台新的PC,以此来实 ...

  4. DevExpress控件之popupMenu

    一.首次创建 1.可直接从工具栏拉一个PopupMenu出来, 2.右键Customize,Yes(提示是否自动创建BarManager,并为popupmenu绑定这个BarManager): 3.编 ...

  5. 开发ionic准备之安卓模拟器设置(2)

    发现这个安卓模拟器设置屏幕还不能太大,太大显示不全,然后整个模拟器不能拖动,所以尽量不要设置太大的分辨率 ,如下即可 如果选安卓4.4然后勾选了其他下面的ok还不能点击的话,这下要去sdk manag ...

  6. 【VBA】自动填充序号

    使用Excle自带的工具栏图标填充 填充效果图如下: 代码如下: Sub 自动填充序号() Dim A As CommandBar '代表容器应用程序中的一个命令栏 Dim B As CommandB ...

  7. BigDecimal舍入模式使用及建议

    1. 八种舍入模式 此节内容参考于 https://my.oschina.net/sunchp/blog/670909. JDK1.5发布的枚举 RoundingMode 对 BigDecimal 的 ...

  8. Ubuntu14.04下MySQL的安装与卸载

    转载自:https://www.2cto.com/os/201408/329502.html 安装MysQL 执行以下命令:sudo apt-get install mysql-server 2. 继 ...

  9. ubuntu安装firefox的flash插件

    1.下载插件 https://get.adobe.com/cn/flashplayer/ 下载tar.gz文件 2.解压缩 切换到下载目录,如果是默认下载的话,用 cd ~/下载/解压缩下载的文件 t ...

  10. mongoDB 索引的用法

    http://www.cnblogs.com/lipan/archive/2011/03/28/1997202.html MongoDB中的索引其实类似于关系型数据库,都是为了提高查询和排序的效率的, ...