该模块提供了堆排序算法的实现。堆是二叉树,最大堆中父节点大于或等于两个子节点,最小堆父节点小于或等于两个子节点。

创建堆

heapq有两种方式创建堆, 一种是使用一个空列表,然后使用heapq.heappush()函数把值加入堆中,另外一种就是使用heap.heapify(list)转换列表成为堆结构

import heapq

# 第一种
"""
函数定义:
heapq.heappush(heap, item)
- Push the value item onto the heap, maintaining the heap invariant.
heapq.heappop(heap)
- Pop and return the smallest item from the heap, maintaining the heap invariant.
If the heap is empty, IndexError is raised. To access the smallest item without popping it, use heap[0].
"""
nums = [2, 3, 5, 1, 54, 23, 132]
heap = []
for num in nums:
heapq.heappush(heap, num) # 加入堆 print(heap[0]) # 如果只是想获取最小值而不是弹出,使用heap[0]
print([heapq.heappop(heap) for _ in range(len(nums))]) # 堆排序结果
# out: [1, 2, 3, 5, 23, 54, 132] # 第二种
nums = [2, 3, 5, 1, 54, 23, 132]
heapq.heapify(nums)
print([heapq.heappop(heap) for _ in range(len(nums))]) # 堆排序结果
# out: [1, 2, 3, 5, 23, 54, 132]

heapq 模块还有一个heapq.merge(*iterables) 方法,用于合并多个排序后的序列成一个排序后的序列, 返回排序后的值的迭代器。
类似于sorted(itertools.chain(*iterables)),但返回的是可迭代的。

"""
函数定义:
heapq.merge(*iterables)
- Merge multiple sorted inputs into a single sorted output (for example, merge timestamped entries from multiple log files). Returns an iterator over the sorted values.
- Similar to sorted(itertools.chain(*iterables)) but returns an iterable, does not pull the data into memory all at once, and assumes that each of the input streams is already sorted (smallest to largest).
"""
import heapq num1 = [32, 3, 5, 34, 54, 23, 132]
num2 = [23, 2, 12, 656, 324, 23, 54]
num1 = sorted(num1)
num2 = sorted(num2) res = heapq.merge(num1, num2)
print(list(res))

访问堆内容

堆创建好后,可以通过`heapq.heappop() 函数弹出堆中最小值。

import heapq
nums = [2, 43, 45, 23, 12]
heapq.heapify(nums) print(heapq.heappop(nums))
# out: 2 # 如果需要所有堆排序后的元素
result = [heapq.heappop(nums) for _ in range(len(nums))]
print(result)
# out: [12, 23, 43, 45]

如果需要删除堆中最小元素并加入一个元素,可以使用heapq.heaprepalce() 函数

import heapq

nums = [1, 2, 4, 5, 3]
heapq.heapify(nums) heapq.heapreplace(nums, 23) print([heapq.heappop(nums) for _ in range(len(nums))])
# out: [2, 3, 4, 5, 23]

获取堆最大或最小值

如果需要获取堆中最大或最小的范围值,则可以使用heapq.nlargest()heapq.nsmallest() 函数

"""
函数定义:
heapq.nlargest(n, iterable[, key])¶
- Return a list with the n largest elements from the dataset defined by iterable.
- key if provided, specifies a function of one argument that is used to extract a comparison key from each element in the iterable: key=str.lower
- Equivalent to: sorted(iterable, key=key, reverse=True)[:n]
"""
import heapq nums = [1, 3, 4, 5, 2]
print(heapq.nlargest(3, nums))
print(heapq.nsmallest(3, nums)) """
输出:
[5, 4, 3]
[1, 2, 3]
"""

这两个函数还接受一个key参数,用于dict或其他数据结构类型使用

import heapq
from pprint import pprint
portfolio = [
{'name': 'IBM', 'shares': 100, 'price': 91.1},
{'name': 'AAPL', 'shares': 50, 'price': 543.22},
{'name': 'FB', 'shares': 200, 'price': 21.09},
{'name': 'HPQ', 'shares': 35, 'price': 31.75},
{'name': 'YHOO', 'shares': 45, 'price': 16.35},
{'name': 'ACME', 'shares': 75, 'price': 115.65}
]
cheap = heapq.nsmallest(3, portfolio, key=lambda s: s['price'])
expensive = heapq.nlargest(3, portfolio, key=lambda s: s['price'])
pprint(cheap)
pprint(expensive) """
输出:
[{'name': 'YHOO', 'price': 16.35, 'shares': 45},
{'name': 'FB', 'price': 21.09, 'shares': 200},
{'name': 'HPQ', 'price': 31.75, 'shares': 35}]
[{'name': 'AAPL', 'price': 543.22, 'shares': 50},
{'name': 'ACME', 'price': 115.65, 'shares': 75},
{'name': 'IBM', 'price': 91.1, 'shares': 100}]
"""

heapq应用

实现heap堆排序算法

>>> def heapsort(iterable):
... h = []
... for value in iterable:
... heappush(h, value)
... return [heappop(h) for i in range(len(h))]
...
>>> heapsort([1, 3, 5, 7, 9, 2, 4, 6, 8, 0])
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

该算法和sorted(iterable) 类似,但是它是不稳定的。

堆的值可以是元组类型,可以实现对带权值的元素进行排序。

>>> h = []
>>> heappush(h, (5, 'write code'))
>>> heappush(h, (7, 'release product'))
>>> heappush(h, (1, 'write spec'))
>>> heappush(h, (3, 'create tests'))
>>> heappop(h)
(1, 'write spec')

heapq模块的更多相关文章

  1. Python heapq 模块的实现 - A Geek's Page

    Python heapq 模块的实现 - A Geek's Page Python heapq 模块的实现

  2. Python常用数据结构之heapq模块

    Python数据结构常用模块:collections.heapq.operator.itertools heapq 堆是一种特殊的树形结构,通常我们所说的堆的数据结构指的是完全二叉树,并且根节点的值小 ...

  3. python标准库:collections和heapq模块

    http://blog.csdn.net/pipisorry/article/details/46947833 python额外的数据类型.collections模块和heapq模块的主要内容. 集合 ...

  4. Python heapq模块

    注意,默认的heap是一个小顶堆! heapq模块提供了如下几个函数: heapq.heappush(heap, item) 把item添加到heap中(heap是一个列表) heapq.heappo ...

  5. python heapq模块使用

    Python内置的heapq模块 Python3.4版本中heapq包含了几个有用的方法: heapq.heappush(heap,item):将item,推入heap >>> it ...

  6. python 中的堆 (heapq 模块)应用:Merge K Sorted Lists

    堆是计算机科学中一类特殊的数据结构的统称.堆通常是一个可以被看做一棵树的数组对象.在队列中,调度程序反复提取队列中第一个作业并运行,因为实际情况中某些时间较短的任务将等待很长时间才能结束,或者某些不短 ...

  7. python3-开发进阶 heapq模块(如何查找最大或最小的N个元素)

    一.怎样从一个集合中获得最大或者最小的 N 个元素列表? heapq 模块有两个函数:nlargest() 和 nsmallest() 可以完美解决这个问题. import heapq nums = ...

  8. python3中的heapq模块使用

    heapq-堆排序算法 heapq实现了一个适合与Python的列表一起使用的最小堆排序算法. 二叉树 树中每个节点至多有两个子节点 满二叉树 树中除了叶子节点,每个节点都有两个子节点 什么是完全二叉 ...

  9. 算法-heapq模块优先队列

    heapq模块, 优先队列,小顶堆,最少值放在顶部,值越小,优先级越高 heapq.heappop(heap) 从堆中弹出最小的元素,并重新调整 heapq.heappush(heap, item)新 ...

随机推荐

  1. 一:ORM关系对象映射(Object Relational Mapping,简称ORM)

    狼来的日子里! 奋发博取 10)django-ORM(创建,字段类型,字段参数) 一:ORM关系对象映射(Object Relational Mapping,简称ORM) ORM分两种: DB fir ...

  2. Python的几种版本的不同实现

    Python自身作为一门编程语言,它有多种实现.这里的实现指的是符合Python语言规范的Python解释程序以及标准库等.这些实现虽然实现的是同一种语言,但是彼此之间,特别是与CPython之间还是 ...

  3. delete操作符

    delete操作符通常用来删除对象的属性: Js代码     var o = { x: 1 }; delete o.x; // true o.x; // undefined 而不是一般的变量: Js代 ...

  4. 浅谈Huffman树

    所谓Huffman树,就是叶子结点带权的\(K\)叉树,假设每个叶子的权值为\(v\),到根的距离为\(dep\),那么最小化\(\sum v_i*dep_i\)就是\(Huffman\)树的拿手好戏 ...

  5. POJ2442:Sequence

    浅谈堆:https://www.cnblogs.com/AKMer/p/10284629.html 题目传送门:http://poj.org/problem?id=2442 我们先简化题意,假设只有两 ...

  6. 【转】 Pro Android学习笔记(七七):服务(2):Local Service

    目录(?)[-] Local service代码 调用Local ServiceLocal Service client代码 AndroidManifestxml定义Serviceacitivty的l ...

  7. 【转】 Pro Android学习笔记(四十):Fragment(5):适应不同屏幕或排版

    目录(?)[-] 设置横排和竖排的不同排版风格 改写代码 对于fragment,经常涉及不同屏幕尺寸和不同的排版风格.我们在基础小例子上做一下改动,在横排的时候,仍是现实左右两个fragment,在竖 ...

  8. Ajax前端调后台方法

    后台对当前页面类进行注册 Ajax.Utility.RegisterTypeForAjax(typeof(Login));//Login 当前类名 在方法上面加 [Ajax.AjaxMethod(Aj ...

  9. Python 图像识别入门篇

    一.安装Python依赖 pip install pytesseract pyocr pillow Image pip安装:https://www.cnblogs.com/Javame/p/10918 ...

  10. 全文检索技术---solr

    1       Solr介绍 1.1   什么是solr Solr 是Apache下的一个顶级开源项目,采用Java开发,它是基于Lucene的全文搜索服务器.Solr可以独立运行在Jetty.Tom ...