前言

Dijkstra算法是处理单源最短路径的有效算法,但它局限于边的权值非负的情况,若图中出现权值为负的边,Dijkstra算法就会失效,求出的最短路径就可能是错的。这时候,就需要使用其他的算法来求解最短路径,Bellman-Ford算法就是其中最常用的一个。

在网络路由中,RIP协议(距离向量路由算法)一般用Bellman-Ford算法,同时由于简单性所以也适用于分布式系统;但是它的复杂度是O(VE),比Dijkstra算法要慢上许多。而OSPF协议,链路状态分组创建的时候一般用Dijkstra算法,因为它的速度快。

Bellman-Ford算法

算法步骤
1.初始化:将除源点外的所有顶点的最短距离估计值 dist[v] ← +∞, dist[s] ←0;
2.迭代求解:反复对边集E中的每条边进行松弛操作,使得顶点集V中的每个顶点v的最短距离估计值逐步逼近其最短距离;(运行|v|-1次)
3.检验负权回路:判断边集E中的每一条边的两个端点是否收敛。如果存在未收敛的顶点,则算法返回false,表明问题无解;否则算法返回true,并且从源点可达的顶点v的最短距离保存在 dist[v]中。

该算法是利用动态规划的思想,自底向上的方式计算最短路径。

#include <iostream>
using namespace std;
const int maxnum = 100;
const int maxint = 99999; // 边,
typedef struct Edge {
int u, v; // 起点,重点
int weight; // 边的权值
}Edge; Edge edge[maxnum]; // 保存边的值
int dist[maxnum]; // 结点到源点最小距离 int nodenum, edgenum, source; // 结点数,边数,源点 // 初始化图
void init()
{
// 输入结点数,边数,源点
cin >> nodenum >> edgenum >> source;
for (int i = 1; i <= nodenum; ++i)
dist[i] = maxint;
dist[source] = 0;
for (int i = 1; i <= edgenum; ++i)
{
cin >> edge[i].u >> edge[i].v >> edge[i].weight;
if (edge[i].u == source) //注意这里设置初始情况
dist[edge[i].v] = edge[i].weight;
}
} // 松弛计算
void relax(int u, int v, int weight)
{
if (dist[v] > dist[u] + weight)
dist[v] = dist[u] + weight;
} bool Bellman_Ford()
{
for (int i = 1; i <= nodenum - 1; ++i)
for (int j = 1; j <= edgenum; ++j)
relax(edge[j].u, edge[j].v, edge[j].weight);
bool flag = 1;
// 判断是否有负环路
for (int i = 1; i <= edgenum; ++i)
if (dist[edge[i].v] > dist[edge[i].u] + edge[i].weight)
{
flag = 0;
break;
}
return flag;
}
int main()
{
init();
if (Bellman_Ford())
for (int i = 1; i <= nodenum; i++)
cout << dist[i] << endl;
system("pause");
return 0;
}

Dijlstra算法

1.初始时,S只包含起点s;U包含除s外的其他顶点,且U中顶点的距离为”起点s到该顶点的距离”[例如,U中顶点v的距离为(s,v)的长度,然后s和v不相邻,则v的距离为∞]。
2.从U中选出”距离最短的顶点k”,并将顶点k加入到S中;同时,从U中移除顶点k。
3.更新U中各个顶点到起点s的距离。之所以更新U中顶点的距离,是由于上一步中确定了k是求出最短路径的顶点,从而可以利用k来更新其它顶点的距离;例如,(s,v)的距离可能大于(s,k)+(k,v)的距离。
4.重复步骤(2)和(3),直到遍历完所有顶点。

参照这篇博客可以对Dijlstra算法有一个清楚地理解。

#include <iostream>
using namespace std; const int maxnum = 100;
const int maxint = 999999; void Dijkstra(int n, int v, int *dist, int *prev, int c[maxnum][maxnum])
{
bool s[maxnum]; // 判断是否已存入该点到S集合中
for(int i=1; i<=n; ++i)
{
dist[i] = c[v][i];
s[i] = 0; // 初始都未用过该点
if(dist[i] == maxint)
prev[i] = 0;
else
prev[i] = v;
}
dist[v] = 0;
s[v] = 1; // 依次将未放入S集合的结点中,取dist[]最小值的结点,放入结合S中
// 一旦S包含了所有V中顶点,dist就记录了从源点到所有其他顶点之间的最短路径长度
for(int i=2; i<=n; ++i)
{
int tmp = maxint;
int u = v;
// 找出当前未使用的点j的dist[j]最小值
for(int j=1; j<=n; ++j)
if((!s[j]) && dist[j]<tmp)
{
u = j; // u保存当前邻接点中距离最小的点的号码
tmp = dist[j];
}
s[u] = 1; // 表示u点已存入S集合中 // 更新dist
for(int j=1; j<=n; ++j)
if((!s[j]) && c[u][j]<maxint)
{
int newdist = dist[u] + c[u][j];
if(newdist < dist[j])
{
dist[j] = newdist;
prev[j] = u;
}
}
}
} void searchPath(int *prev,int v, int u)
{
int que[maxnum];
int tot = 1;
que[tot] = u;
tot++;
int tmp = prev[u];
while(tmp != v)
{
que[tot] = tmp;
tot++;
tmp = prev[tmp];
}
que[tot] = v;
for(int i=tot; i>=1; --i)
if(i != 1)
cout << que[i] << " -> ";
else
cout << que[i] << endl;
} int main()
{
freopen("input.txt", "r", stdin);
// 各数组都从下标1开始
int dist[maxnum]; // 表示当前点到源点的最短路径长度
int prev[maxnum]; // 记录当前点的前一个结点
int c[maxnum][maxnum]; // 记录图的两点间路径长度
int n, line; // 图的结点数和路径数 // 输入结点数
cin >> n;
// 输入路径数
cin >> line;
int p, q, len; // 输入p, q两点及其路径长度 // 初始化c[][]为maxint
for(int i=1; i<=n; ++i)
for(int j=1; j<=n; ++j)
c[i][j] = maxint; for(int i=1; i<=line; ++i)
{
cin >> p >> q >> len;
if(len < c[p][q]) // 有重边
{
c[p][q] = len; // p指向q
c[q][p] = len; // q指向p,这样表示无向图
}
} for(int i=1; i<=n; ++i)
dist[i] = maxint;
for(int i=1; i<=n; ++i)
{
for(int j=1; j<=n; ++j)
printf("%8d", c[i][j]);
printf("\n");
} Dijkstra(n, 1, dist, prev, c); // 最短路径长度
cout << "源点到最后一个顶点的最短路径长度: " << dist[n] << endl; // 路径
cout << "源点到最后一个顶点的路径为: ";
searchPath(prev, 1, n);
}

求最短路径(Bellman-Ford算法与Dijkstra算法)的更多相关文章

  1. 最短路径算法(Dijkstra算法、Floyd-Warshall算法)

    最短路径算法具体的形式包括: 确定起点的最短路径问题:即已知起始结点,求最短路径的问题.适合使用Dijkstra算法. 确定终点的最短路径问题:即已知终结结点,求最短路径的问题.在无向图中,该问题与确 ...

  2. 数据结构与算法系列研究七——图、prim算法、dijkstra算法

    图.prim算法.dijkstra算法 1. 图的定义 图(Graph)可以简单表示为G=<V, E>,其中V称为顶点(vertex)集合,E称为边(edge)集合.图论中的图(graph ...

  3. 算法设计(动态规划应用实验报告)实现基于贪婪技术思想的Prim算法、Dijkstra算法

    一.名称 动态规划法应用 二.目的 1.贪婪技术的基本思想: 2.学会运用贪婪技术解决实际设计应用中碰到的问题. 三.要求 1.实现基于贪婪技术思想的Prim算法: 2.实现基于贪婪技术思想的Dijk ...

  4. 最短路径算法之Dijkstra算法(java实现)

    前言 Dijkstra算法是最短路径算法中为人熟知的一种,是单起点全路径算法.该算法被称为是“贪心算法”的成功典范.本文接下来将尝试以最通俗的语言来介绍这个伟大的算法,并赋予java实现代码. 一.知 ...

  5. 图中最短路径算法(Dijkstra算法)(转)

    1.Dijkstra 1)      适用条件&范围: a)   单源最短路径(从源点s到其它所有顶点v); b)   有向图&无向图(无向图可以看作(u,v),(v,u)同属于边集E ...

  6. JS实现最短路径之迪杰斯特拉(Dijkstra)算法

    最短路径: 对于网图来说,最短路径是指两个顶点之间经过的边上权值和最少的路径,我们称第一个顶点是源点,最后一个顶点是终点 迪杰斯特拉 ( Dijkstra) 算法是并不是一下子就求出 了 Vo 到V8 ...

  7. SDUT OJ 图结构练习——最短路径 ( Floyed 算法 AND Dijkstra算法)

    图结构练习——最短路径 Time Limit: 1000 ms            Memory Limit: 65536 KiB Submit Statistic Discuss Problem ...

  8. 最短路径算法 2.Dijkstra算法

    Dijkstra 算法解决的是带权重的有向图上单源最短路径问题,该算法要求所有边的权重都为非负值.该算法的时间复杂度是O(N2),相比于处理无负权的图时,比Bellmad-Ford算法效率更高. 算法 ...

  9. 非负权值有向图上的单源最短路径算法之Dijkstra算法

    问题的提法是:给定一个没有负权值的有向图和其中一个点src作为源点(source),求从点src到其余个点的最短路径及路径长度.求解该问题的算法一般为Dijkstra算法. 假设图顶点个数为n,则针对 ...

随机推荐

  1. Oracle12c多租户如何连接到CDB或PDB、CDB与PDB容器切换

    Oracle 数据库 12 c 多租户选项允许单个容器数据库 (CDB) 来承载多个单独的可插拔数据库 (PDB).那么我们如何连接到容器数据库 (CDB) 和可插拔数据库 (PDB). 1. V$S ...

  2. oracle rac搭建

    (一)环境准备 主机操作系统 windows10 虚拟机平台 vmware workstation 12 虚拟机操作系统 redhat 5.5 x86(32位) :Linux.5.5.for.x86. ...

  3. JavaScript-Tool:pluload

    ylbtech-JavaScript-Tool:pluload Plupload是用于处理文件上传的JavaScript API,支持多文件选择.文件类型过滤.请求分块.客户端图像缩放等功能,使用不同 ...

  4. ES6学习之装饰器

    定义:修饰器是一个对类进行处理的函数,用来修改类的行为 <注>:装饰器只能用来修改类及类的方法 类的装饰: 静态属性:只能通过类访问,修饰函数直接在类上操作 @testable class ...

  5. ES6学习之Reflect

    Reflect对象与Proxy对象一样,也是 ES6 为了操作对象而提供的新 API Reflect设计目的: 将Object对象的一些明显属于语言内部的方法(比如Object.definePrope ...

  6. MS SQL update set select

    有张表a,已经有数据 再有张表b,也已查询出数据 两张表有外键关联 需求如下: 更新表a中的某个字段,这个字段要加上(都是int型的数据)对应表b中的数据作为更新的最终数据 )) from #libL ...

  7. 安装 ambaria

    hadoop安装 wget http://public-repo-1.hortonworks.com/ambari/centos6/1.x/updates/1.2.4.9/ambari.repo cp ...

  8. Arcane Numbers 1

    Vance and Shackler like playing games. One day, they are playing a game called "arcane numbers& ...

  9. IPMITOOL 配置BMC用户设置

    IPMITOOL 配置BMC用户设置 本文档共介绍5条ipmi设置user的命令,这些命令需要使用root权限才能使用,其中- H为需要操作的BMC ip,-I lanplus为使用rmcp+协议发送 ...

  10. SuperSocket使用 IRequestInfo 和 IReceiveFilter 等对象实现自定义协议

    为什么你要使用自定义协议? 通信协议用于将接收到的二进制数据转化成您的应用程序可以理解的请求. SuperSocket提供了一个内置的通信协议“命令行协议”定义每个请求都必须以回车换行"\r ...