HDU 4578——Transformation——————【线段树区间操作、确定操作顺序】
Transformation
Time Limit: 15000/8000 MS (Java/Others) Memory Limit: 65535/65536 K (Java/Others)
Total Submission(s): 3830 Accepted Submission(s): 940
There are n integers, a1, a2, …, an. The initial values of them are 0. There are four kinds of operations.
Operation 1: Add c to each number between ax and ay inclusive. In other words, do transformation ak<---ak+c, k = x,x+1,…,y.
Operation 2: Multiply c to each number between ax and ay inclusive. In other words, do transformation ak<---ak×c, k = x,x+1,…,y.
Operation 3: Change the numbers between ax and ay to c, inclusive. In other words, do transformation ak<---c, k = x,x+1,…,y.
Operation 4: Get the sum of p power among the numbers between ax and ay inclusive. In other words, get the result of axp+ax+1p+…+ay p.
Yuanfang has no idea of how to do it. So he wants to ask you to help him.
For each case, the first line contains two numbers n and m, meaning that there are n integers and m operations. 1 <= n, m <= 100,000.
Each the following m lines contains an operation. Operation 1 to 3 is in this format: "1 x y c" or "2 x y c" or "3 x y c". Operation 4 is in this format: "4 x y p". (1 <= x <= y <= n, 1 <= c <= 10,000, 1 <= p <= 3)
The input ends with 0 0.
#include<bits/stdc++.h>
using namespace std;
#define mid (L+R)/2
#define lson rt*2,L,mid
#define rson rt*2+1,mid+1,R
typedef long long INT;
const int maxn = 120000;
const int mod = 10007;
struct SegTree{
int add,multi,setv;
int sum1,sum2,sum3;
}segs[maxn*4];
void PushUp(int rt,int L,int R){
segs[rt].sum1 = (segs[rt*2].sum1 + segs[rt*2+1].sum1)% mod;
segs[rt].sum2 = (segs[rt*2].sum2 + segs[rt*2+1].sum2)% mod;
segs[rt].sum3 = (segs[rt*2].sum3 + segs[rt*2+1].sum3)% mod;
}
void buildtree(int rt,int L,int R){
segs[rt].multi = 1;
segs[rt].add = segs[rt].setv = 0;
segs[rt].sum1 = segs[rt].sum2 = segs[rt].sum3 = 0;
if(L == R){
return ;
}
buildtree(lson);
buildtree(rson);
}
void PushDown(int rt,int L,int R){
if(segs[rt].setv){ //考虑下放赋值标记
segs[rt*2].setv = segs[rt*2+1].setv = segs[rt].setv;
segs[rt*2].add = segs[rt*2+1].add = 0;
segs[rt*2].multi = segs[rt*2+1].multi = 1; segs[rt*2].sum1 = (mid-L+1)*segs[rt].setv % mod;
segs[rt*2].sum2 = (mid-L+1)*segs[rt].setv %mod *segs[rt].setv % mod;
segs[rt*2].sum3 = (mid-L+1)*segs[rt].setv %mod *segs[rt].setv % mod *segs[rt].setv % mod; segs[rt*2+1].sum1 = (R-mid)*segs[rt].setv % mod;
segs[rt*2+1].sum2 = (R-mid)*segs[rt].setv % mod *segs[rt].setv % mod;
segs[rt*2+1].sum3 = (R-mid)*segs[rt].setv % mod *segs[rt].setv % mod *segs[rt].setv % mod;
segs[rt].setv = 0;
}
if(segs[rt].multi != 1 || segs[rt].add){//如果有加和标记或者乘积标记
segs[rt*2].add = (segs[rt].multi * segs[rt*2].add %mod + segs[rt].add) % mod;
segs[rt*2].multi = segs[rt].multi * segs[rt*2].multi % mod;
int sum1, sum2 ,sum3;
//一次方和
sum1 = (segs[rt*2].sum1*segs[rt].multi %mod + (mid-L+1)*segs[rt].add %mod) % mod;
//平方和
sum2 = (segs[rt*2].sum2*segs[rt].multi %mod *segs[rt].multi %mod + 2*segs[rt].add * segs[rt].multi %mod *segs[rt*2].sum1 %mod + (mid-L+1)*segs[rt].add %mod *segs[rt].add %mod ) % mod;
//三次方和
sum3 = segs[rt*2].sum3*segs[rt].multi %mod *segs[rt].multi %mod *segs[rt].multi %mod;
sum3 = (sum3 + 3*segs[rt].add*segs[rt].multi %mod *segs[rt].multi %mod *segs[rt*2].sum2 %mod) % mod;
sum3 = (sum3 + 3*segs[rt].add*segs[rt].add %mod *segs[rt].multi %mod *segs[rt*2].sum1 %mod ) % mod;
sum3 = (sum3 + (mid-L+1)*segs[rt].add %mod *segs[rt].add %mod *segs[rt].add %mod ) % mod;
segs[rt*2].sum1 = sum1;
segs[rt*2].sum2 = sum2;
segs[rt*2].sum3 = sum3;
//同理,更新右儿子
segs[rt*2+1].add = (segs[rt*2+1].add*segs[rt].multi %mod + segs[rt].add) % mod;
segs[rt*2+1].multi = segs[rt*2+1].multi * segs[rt].multi % mod;
sum1 = (segs[rt*2+1].sum1*segs[rt].multi %mod + (R-mid)*segs[rt].add %mod) % mod;
sum2 = (segs[rt*2+1].sum2*segs[rt].multi %mod *segs[rt].multi %mod + 2*segs[rt].add*segs[rt].multi %mod *segs[rt*2+1].sum1 %mod + (R-mid)*segs[rt].add %mod *segs[rt].add %mod) % mod; sum3 = segs[rt*2+1].sum3*segs[rt].multi %mod *segs[rt].multi %mod *segs[rt].multi %mod;
sum3 = (sum3 + 3*segs[rt].add*segs[rt].multi %mod *segs[rt].multi %mod *segs[rt*2+1].sum2 %mod) % mod;
sum3 = (sum3 + 3*segs[rt].add*segs[rt].add %mod *segs[rt].multi %mod *segs[rt*2+1].sum1 %mod ) % mod;
sum3 = (sum3 + (R-mid)*segs[rt].add %mod *segs[rt].add %mod *segs[rt].add %mod ) % mod; segs[rt*2+1].sum1 = sum1;
segs[rt*2+1].sum2 = sum2;
segs[rt*2+1].sum3 = sum3;
segs[rt].add = 0;
segs[rt].multi = 1;
}
}
void Update(int rt,int L,int R,int l_ran,int r_ran,int c,int typ){
if(l_ran <= L&&R <= r_ran){
if(typ == 1){ //加和
segs[rt].add = (segs[rt].add + c)%mod;
segs[rt].sum3 = (segs[rt].sum3 + (R-L+1)*c %mod *c %mod *c %mod + 3*c %mod *segs[rt].sum2 %mod + 3*c %mod *c %mod *segs[rt].sum1 %mod ) % mod;
segs[rt].sum2 = (segs[rt].sum2 + (R-L+1)*c %mod *c %mod + 2*segs[rt].sum1 %mod *c %mod ) % mod;
segs[rt].sum1 = ((R-L+1)*c %mod + segs[rt].sum1) % mod;
}else if(typ == 2){ //乘积
//乘积对当前节点的和跟乘都有影响
segs[rt].add = segs[rt].add * c % mod;
segs[rt].multi = segs[rt].multi * c % mod; segs[rt].sum1 = segs[rt].sum1 * c % mod;
segs[rt].sum2 = segs[rt].sum2 * c %mod *c %mod;
segs[rt].sum3 = segs[rt].sum3 *c %mod *c %mod *c % mod;
}else{ //赋值
segs[rt].setv = c;
segs[rt].multi = 1;
segs[rt].add = 0;
segs[rt].sum1 = c*(R-L+1) % mod;
segs[rt].sum2 = c*(R-L+1) % mod*c % mod;
segs[rt].sum3 = c*(R-L+1) % mod*c % mod *c %mod ;
}
return ;
}
PushDown(rt,L,R);
if(l_ran <= mid)
Update(lson,l_ran,r_ran,c,typ);
if(r_ran > mid)
Update(rson,l_ran,r_ran,c,typ);
PushUp(rt,L,R);
}
int query(int rt,int L,int R,int l_ran,int r_ran,int pw){
if(l_ran <= L&&R <= r_ran){
if(pw == 1){
return segs[rt].sum1;
}else if(pw == 2){
return segs[rt].sum2;
}else{
return segs[rt].sum3;
}
}
PushDown(rt,L,R);
int ret = 0;
if(l_ran <= mid){
ret = (ret + query(lson,l_ran,r_ran,pw)) % mod;
}
if(r_ran > mid){
ret = (ret + query(rson,l_ran,r_ran,pw)) % mod;
}
return ret;
}
int main(){
int n,m;
while(scanf("%d%d",&n,&m)!=EOF&&(n+m)){
int c,u,v,w;
buildtree(1,1,n);
for(int i = 1; i <= m; i++){
scanf("%d%d%d%d",&c,&u,&v,&w);
if(c == 4){
int res = query(1,1,n,u,v,w);
printf("%d\n",res);
}else {
Update(1,1,n,u,v,w,c);
}
}
}
return 0;
}
HDU 4578——Transformation——————【线段树区间操作、确定操作顺序】的更多相关文章
- hdu 4578 Transformation 线段树多种操作裸题
自己写了一个带结构体的WA了7.8次 但是测了几组小数据都对..感觉问题应该出在模运算那里.写完这波题解去对拍一下. 以后线段树绝不写struct!一般的struct都带上l,r 但是一条线段的长度确 ...
- HDU 4578 Transformation --线段树,好题
题意: 给一个序列,初始全为0,然后有4种操作: 1. 给区间[L,R]所有值+c 2.给区间[L,R]所有值乘c 3.设置区间[L,R]所有值为c 4.查询[L,R]的p次方和(1<=p< ...
- hdu 4578 Transformation 线段树
没什么说的裸线段树,注意细节就好了!!! 代码如下: #include<iostream> #include<stdio.h> #include<algorithm> ...
- hdu 4031 attack 线段树区间更新
Attack Time Limit: 5000/3000 MS (Java/Others) Memory Limit: 65768/65768 K (Java/Others)Total Subm ...
- HDU 3308 (线段树区间合并)
http://acm.hdu.edu.cn/showproblem.php?pid=3308 题意: 两个操作 : 1 修改 单点 a 处的值. 2 求出 区间[a,b]内的最长上升子序列. 做法 ...
- HDU 3308 LCIS (线段树区间合并)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3308 题目很好懂,就是单点更新,然后求区间的最长上升子序列. 线段树区间合并问题,注意合并的条件是a[ ...
- hdu 5023(线段树区间染色,统计区间内颜色个数)
题目描述:区间染色问题,统计给定区间内有多少种颜色? 线段树模板的核心是对标记的处理 可以记下沿途经过的标记,到达目的节点之后一块算,也可以更新的时候直接更新到每一个节点 Lazy操作减少修改的次数( ...
- Bzoj 1798: [Ahoi2009]Seq 维护序列seq(线段树区间操作)
1798: [Ahoi2009]Seq 维护序列seq Time Limit: 30 Sec Memory Limit: 64 MB Description 老师交给小可可一个维护数列的任务,现在小可 ...
- LCIS HDU - 3308 (线段树区间合并)
LCIS HDU - 3308 Given n integers. You have two operations: U A B: replace the Ath number by B. (inde ...
- POJ 2528 ——Mayor's posters(线段树+区间操作)
Time limit 1000 ms Memory limit 65536 kB Description The citizens of Bytetown, AB, could not stand t ...
随机推荐
- 关于Android Studio中第三方jar包的Javadoc绑定
原文地址:http://blog.csdn.net/a739697044/article/details/28116189 现在刚开始从Eclipse转用Android Studio,现在在尝试使 ...
- ACM 离散化处理
使用STL算法离散化: 思路:先排序,再删除重复元素,然后就是索引元素离散化后对应的值. 1. unique(): 头文件为algorithm unique的作用是“去掉”容器中相邻元素的重复元 ...
- Flask 程序的基本结构
1.初始化 所有Flask程序都必须创建一个程序实例.web服务器使用一种名为Web服务器网关借口的协议,把接收自客户端的所有请求都转交给这个对象处理. from flask import Flask ...
- OkHttp 3.x 源码解析之Interceptor 拦截器
拦截器 Java里的拦截器是动态拦截Action调用的对象.它提供了一种机制可以使开发者可以定义在一个action执行的前后执行的代码,也可以在一个action执行前阻止其执行,同时也提供了一种可以提 ...
- Qt 学习之路 2(5):自定义信号槽
Home / Qt 学习之路 2 / Qt 学习之路 2(5):自定义信号槽 Qt 学习之路 2(5):自定义信号槽 豆子 2012年8月24日 Qt 学习之路 2 131条评论 上一节我们详 ...
- pytorch批训练数据构造
这是对莫凡python的学习笔记. 1.创建数据 import torch import torch.utils.data as Data BATCH_SIZE = 8 x = torch.linsp ...
- POJ3041轰炸行星(匈牙利算法 最小覆盖点集)
Asteroids Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 25232 Accepted: 13625 Descr ...
- python 字符串的特性
#######str字符串#####str字符判断大小写 url1 = 'http://www.cctv.com' url2 = 'file:///mnt' print url1.startsw ...
- sql游标及模仿游标操作
游标用途:对一个查询出来的结果,每一行作为参数进行操作 一:游标操作 --申请一个游标 DECLARE MyCursor CURSOR FOR SELECT ID FROM dbo.tb_stock ...
- mc01_IntelliJ IDEA安装与Java项目创建以及Tomcat配置
IntelliJ IDEA安装与激活 下载地址:http://www.jetbrains.com/idea/ 安装下一步下一步即可,关键是注册激活,该部分分两个步骤: 1. 配置windows hos ...