传送门

题解在此,讲的蛮清楚的->这里

我就贴个代码

 //minamoto
#include<iostream>
#include<cstdio>
#include<cmath>
using namespace std;
#define getc() (p1==p2&&(p2=(p1=buf)+fread(buf,1,1<<21,stdin),p1==p2)?EOF:*p1++)
char buf[<<],*p1=buf,*p2=buf;
inline int read(){
#define num ch-'0'
char ch;bool flag=;int res;
while(!isdigit(ch=getc()))
(ch=='-')&&(flag=true);
for(res=num;isdigit(ch=getc());res=res*+num);
(flag)&&(res=-res);
#undef num
return res;
}
char sr[<<],z[];int C=-,Z;
inline void Ot(){fwrite(sr,,C+,stdout),C=-;}
inline void print(int x){
if(C><<)Ot();if(x<)sr[++C]=,x=-x;
while(z[++Z]=x%+,x/=);
while(sr[++C]=z[Z],--Z);sr[++C]='\n';
}
inline char getop(){
char ch;
while((ch=getc())!='A'&&ch!='C');
return ch;
}
const int N=,M=;
int ans[M][M],v[N],s,n,m;
int main(){
// freopen("testdata.in","r",stdin);
n=read(),m=read(),s=pow(n,0.3333);
for(int i=;i<=n;++i){
v[i]=read();
for(int j=;j<=s;++j)
ans[j][i%j]+=v[i];
}
while(m--){
char op=getop();int x=read(),y=read();
switch(op){
case 'A':{
if(x<=s) print(ans[x][y%x]);
else{
int res=;
for(int i=y;i<=n;i+=x) res+=v[i];
print(res);
}
break;
}
case 'C':{
for(int i=;i<=s;++i) ans[i][x%i]+=y-v[x];
v[x]=y;
break;
}
}
}
Ot();
return ;
}

洛谷P3396 哈希冲突(分块)的更多相关文章

  1. 洛谷P3396 哈希冲突 (分块)

    洛谷P3396 哈希冲突 题目背景 此题约为NOIP提高组Day2T2难度. 题目描述 众所周知,模数的hash会产生冲突.例如,如果模的数p=7,那么4和11便冲突了. B君对hash冲突很感兴趣. ...

  2. 洛谷 P3396 哈希冲突 解题报告

    P3396 哈希冲突 题目背景 此题约为NOIP提高组Day2T2难度. 题目描述 众所周知,模数的hash会产生冲突.例如,如果模的数p=7,那么4和11便冲突了. B君对hash冲突很感兴趣.他会 ...

  3. 洛谷P3396 哈希冲突

    分块还真是应用广泛啊...... 题意:求 解:以n0.5为界. 当p小于n0.5的时候,直接用p²大小的数组储存答案. 预处理n1.5,修改n0.5. 当p大于n0.5的时候,直接按照定义计算,复杂 ...

  4. 洛谷P3396哈希冲突

    传送门啦 非常神奇的分块大法. 这个题一看数据范围,觉得不小,但是如果我们以 $ \sqrt(x) $ 为界限,数据范围就降到了 $ x < 400 $ 我们设数组 $ f[i][j] $ 表示 ...

  5. luogu P3396 哈希冲突(分块?)

    我们可以维护一个\(f[i][j]\)代表%\(i\)意义下得\(j\)的答案.然后维护就炸了. 先设\(x=\sqrt{n}\)然后我们发现,当\(i>x\)时我们直接暴力复杂度为\(O(x) ...

  6. 莫队 [洛谷2709] 小B的询问[洛谷1903]【模板】分块/带修改莫队(数颜色)

    莫队--------一个优雅的暴力 莫队是一个可以在O(n√n)内求出绝大部分无修改的离线的区间问题的答案(只要问题满足转移是O(1)的)即你已知区间[l,r]的解,能在O(1)的时间内求出[l-1, ...

  7. P3396 哈希冲突(思维+方块)

    题目 P3396 哈希冲突 做法 预处理模数\([1,\sqrt{n}]\)的内存池,\(O(n\sqrt{n})\) 查询模数在范围里则直接输出,否则模拟\(O(m\sqrt{n})\) 修改则遍历 ...

  8. 题解 洛谷 P3396 【哈希冲突】(根号分治)

    根号分治 前言 本题是一道讲解根号分治思想的论文题(然鹅我并没有找到论文),正 如论文中所说,根号算法--不仅是分块,根号分治利用的思想和分块像 似却又不同,某一篇洛谷日报中说过,分块算法实质上是一种 ...

  9. 洛谷P3935 Calculating(整除分块)

    题目链接:洛谷 题目大意:定义 $f(x)=\prod^n_{i=1}(k_i+1)$,其中 $x$ 分解质因数结果为 $x=\prod^n_{i=1}{p_i}^{k_i}$.求 $\sum^r_{ ...

随机推荐

  1. Python基础之元组操作

    元组的常用操作包括但不限于以下操作: 元组的索引,计数等 这里将对列表的内置操作方法进行总结归纳,重点是以示例的方式进行展示. 使用type获取创建对象的类 type(tuple) 使用dir获取类的 ...

  2. Python基础-内置函数总结

    内置函数 int('123') float() string() tuple() set() dict(name='zdd',age=18) type()#查看类型 len()#看长度,其实是元素的个 ...

  3. json-lib简单处理json和对json的简单介绍

    JSON 1.json是什么? *它是js提供的一种数据交换格式 2.json的语法 *{}:是对象! >属性名必须使用双引号括起来!单引号不行!!! >属性值: *null *数值 *数 ...

  4. HDU 6231 (K-th Number)

    题目链接:https://cn.vjudge.net/problem/HDU-6231 思路:二分+双指针: #include <stdio.h> #include <iostrea ...

  5. ATL com的dll文件与tlb文件

    一..tlb文件: 只有COM组件才有tlb文件,普通dll文件没有. 包含内容: 1.它包含了COM类和接口的GUID值,接口的函数声明信息,并不是接口的实现文件.相当于类和接口的头文件. tlb文 ...

  6. 基于FTP服务、JAVA实现文件同步操作

    package lixj.ftp; import java.io.File; import java.io.FileInputStream; import java.io.FileOutputStre ...

  7. [HDU4652]Dice

    vjudge 题意 \(m\)面骰子,求 1.连续出现\(n\)个相同的停止: 2.连续出现\(n\)个不同的停止 的期望投骰子次数. \(n,m ≤ 10^6\) sol 首先考虑一个转移式子吧. ...

  8. 移植memtester到android平台

    硬件搭建起来能进入系统,首要就是测试内存的稳定性,需要一款内存测试工具. 一般都是选择memtester这款linux软件,下载地址如下:http://pyropus.ca/software/memt ...

  9. JSP介绍(4)--- JSP 过滤器

    过滤器是可用于 Servlet 编程的 Java 类,可以实现以下目的: 在客户端的请求访问后端资源之前,拦截这些请求. 在服务器的响应发送回客户端之前,处理这些响应. 过滤器通过 Web 部署描述符 ...

  10. ORM查询相关

    一.多对多的正反向查询 class Class(models.Model): name = models.CharField(max_length=32,verbose_name="班级名& ...