P3379 【模板】最近公共祖先(LCA)(倍增)
这题有毒!!!!!!!!!!
TM我重新打的板子,然而。。。。。。
5分钟打完 debug两小时
我的写法常数太大了
每次DFS都要For去更新F
最后写了快读才A
改:
只处理f[i][0]
dfs结束在处理f
整整快了一倍多!!!!!!!!
靠!!
烦。。。。
#include<cstdio>
#include<iostream>
using namespace std;
#define olinr return
#define love_nmr 0
#define nmr 505050
struct node
{
int nxt,to;
}edge[nmr<<];
int head[nmr];
int n;
int m;
int root;
int f[nmr][];
int dep[nmr];
int cnt;
inline int read()
{
char ch=getchar();
int x=,f=;
while(!isdigit(ch))
{
if(ch=='-')
f=-f;
ch=getchar();
}
while(isdigit(ch))
{
x=(x<<)+(x<<)+(ch^);
ch=getchar();
}
return x*f;
}
inline void put(int x)
{
if(x<)
{
putchar('-');
x=-x;
}
if(x>)
put(x/);
putchar(x%+'');
}
inline void add(int from,int to)
{
cnt++;
edge[cnt].to=to;
edge[cnt].nxt=head[from];
head[from]=cnt;
}
inline void dfs(int x,int fa)
{
dep[x]=dep[fa]+;
f[x][]=fa;
for(int i=head[x];i;i=edge[i].nxt)
{
int go=edge[i].to;
if(go!=fa)
dfs(go,x);
}
}
inline void swap(int &x,int &y)
{
int t=x; x=y; y=t;
}
inline int LCA(int x,int y)
{
if(dep[x]<dep[y]) swap(x,y);
for(int i=;i>=;i--)
if(dep[x]-(<<i)>=dep[y])
x=f[x][i];
if(x==y) olinr x;
for(int i=;i>=;i--)
if(f[x][i]!=f[y][i])
{
x=f[x][i];
y=f[y][i];
}
olinr f[x][];
} int main()
{
n=read();
m=read();
root=read();
int x,y;
for(int i=;i<=n-;i++)
{
x=read();
y=read();
add(x,y);
add(y,x);
}
dfs(root,);
for(int j=;(<<j)<=n;j++)
for(int i=;i<=n;i++)
f[i][j]=f[f[i][j-]][j-];
for(int i=;i<=m;i++)
{
x=read();
y=read();
put(LCA(x,y));
putchar('\n');
}
olinr love_nmr;
}
P3379 【模板】最近公共祖先(LCA)(倍增)的更多相关文章
- [模板] 最近公共祖先/lca
简介 最近公共祖先 \(lca(a,b)\) 指的是a到根的路径和b到n的路径的深度最大的公共点. 定理. 以 \(r\) 为根的树上的路径 \((a,b) = (r,a) + (r,b) - 2 * ...
- 【lhyaaa】最近公共祖先LCA——倍增!!!
高级的算法——倍增!!! 根据LCA的定义,我们可以知道假如有两个节点x和y,则LCA(x,y)是 x 到根的路 径与 y 到根的路径的交汇点,同时也是 x 和 y 之间所有路径中深度最小的节 点,所 ...
- luogu3379 【模板】最近公共祖先(LCA) 倍增法
题目大意:给定一棵有根多叉树,请求出指定两个点直接最近的公共祖先. 整体步骤:1.使两个点深度相同:2.使两个点相同. 这两个步骤都可用倍增法进行优化.定义每个节点的Elder[i]为该节点的2^k( ...
- 最近公共祖先 LCA 倍增算法
树上倍增求LCA LCA指的是最近公共祖先(Least Common Ancestors),如下图所示: 4和5的LCA就是2 那怎么求呢?最粗暴的方法就是先dfs一次,处理出每个点的深度 ...
- 最近公共祖先 LCA 倍增法
[简介] 解决LCA问题的倍增法是一种基于倍增思想的在线算法. [原理] 原理和同样是使用倍增思想的RMQ-ST 算法类似,比较简单,想清楚后很容易实现. 对于每个节点u , ancestors[u] ...
- Luogu 2245 星际导航(最小生成树,最近公共祖先LCA,并查集)
Luogu 2245 星际导航(最小生成树,最近公共祖先LCA,并查集) Description sideman做好了回到Gliese 星球的硬件准备,但是sideman的导航系统还没有完全设计好.为 ...
- POJ 1470 Closest Common Ancestors(最近公共祖先 LCA)
POJ 1470 Closest Common Ancestors(最近公共祖先 LCA) Description Write a program that takes as input a root ...
- POJ 1330 Nearest Common Ancestors / UVALive 2525 Nearest Common Ancestors (最近公共祖先LCA)
POJ 1330 Nearest Common Ancestors / UVALive 2525 Nearest Common Ancestors (最近公共祖先LCA) Description A ...
- 【洛谷 p3379】模板-最近公共祖先(图论--倍增算法求LCA)
题目:给定一棵有根多叉树,请求出指定两个点直接最近的公共祖先. 解法:倍增. 1 #include<cstdio> 2 #include<cstdlib> 3 #include ...
- 最近公共祖先(LCA)模板
以下转自:https://www.cnblogs.com/JVxie/p/4854719.html 首先是最近公共祖先的概念(什么是最近公共祖先?): 在一棵没有环的树上,每个节点肯定有其父亲节点和祖 ...
随机推荐
- 自定义ajax小工具以及使用
function createXMLHttpRequest(){ try{ return new XMLHttpRequest(); }catch(e){ try{ return new Active ...
- SHOI2016 随机序列
给你一个数列,在相邻两个数之间插入加号,减号或乘号 每次支持单点修改,求所有这样可以得到的表达式之和,膜1e9 + 7 sol: 我是个 sb ... 可以发现,如果某位置出现了加号,后面一定有一个减 ...
- 桥接以及Mercury MW54R中继
家里连个路由器,一个是比较先进的TP-Link的TL-WR842N(100M),另外一个是比较古老的水星(Mercury) MW54R(54M),我们知道新的路由器都有WDS功能,方便作为副路由器(中 ...
- PTA实验作业-01
一.PTA实验作业 本周要求挑3道题目写设计思路.调试过程.设计思路用伪代码描述.题目选做要求: 顺序表选择一题(6-2,6-3,7-1选一题),代码必须用顺序结构抽象数据类型封装 单链表选择一题(6 ...
- PG peered实验
标签(空格分隔): ceph,ceph实验,pg 1. 创建一个文件,并把该文件作为对象放到集群中: [root@node1 ~]# echo "this is test! " & ...
- Go和HTTPS
转自:http://tonybai.com/2015/04/30/go-and-https/ 近期在构思一个产品,考虑到安全性的原因,可能需要使用到HTTPS协议以及双向数字证书校验.之前只是粗浅接触 ...
- Spring Boot 专栏
http://blog.csdn.net/column/details/spring-boot.html?&page=2
- python 基础 字典 小例子
统计单词次数 作为字典存储 cotent = "who have an apple apple is free free is money you know" result = { ...
- C语言学习笔记--enum和sizeof关键字
1.enum关键字 C语言中enum关键字用来定义枚举类型 (1)enum 是 C 语言中的一种自定义类型(2)enum 值是可以根据需要自定义的的整型值(3)第一个定义的 enum 值默认为 0 ( ...
- javaScript之Array方法
Array类型和其他语言一样,是数据的有序列表,但不同的是数组的每一项们可以保存任何类型的数据. 1.检测方法(确定某个对象是不是数组) (1)value instanceof Array (2)Ar ...