二分LIS模板
假设存在一个序列d[1..9] = 2 1 5 3 6 4 8 9 7,可以看出来它的LIS长度为5。
下面一步一步试着找出它。
我们定义一个序列B,然后令 i = 1 to 9 逐个考察这个序列。
此外,我们用一个变量Len来记录现在最长算到多少了
首先,把d[1]有序地放到B里,令B[1] = 2,就是说当只有1一个数字2的时候,长度为1的LIS的最小末尾是2。这时Len=1
然后,把d[2]有序地放到B里,令B[1] = 1,就是说长度为1的LIS的最小末尾是1,d[1]=2已经没用了,很容易理解吧。这时Len=1
接着,d[3] = 5,d[3]>B[1],所以令B[1+1]=B[2]=d[3]=5,就是说长度为2的LIS的最小末尾是5,很容易理解吧。这时候B[1..2] = 1, 5,Len=2
再来,d[4] = 3,它正好加在1,5之间,放在1的位置显然不合适,因为1小于3,长度为1的LIS最小末尾应该是1,这样很容易推知,长度为2的LIS最小末尾是3,于是可以把5淘汰掉,这时候B[1..2] = 1, 3,Len = 2
继续,d[5] = 6,它在3后面,因为B[2] = 3, 而6在3后面,于是很容易可以推知B[3] = 6, 这时B[1..3] = 1, 3, 6,还是很容易理解吧? Len = 3 了噢。
第6个, d[6] = 4,你看它在3和6之间,于是我们就可以把6替换掉,得到B[3] = 4。B[1..3] = 1, 3, 4, Len继续等于3
第7个, d[7] = 8,它很大,比4大,嗯。于是B[4] = 8。Len变成4了
第8个, d[8] = 9,得到B[5] = 9,嗯。Len继续增大,到5了。
最后一个, d[9] = 7,它在B[3] = 4和B[4] = 8之间,所以我们知道,最新的B[4] =7,B[1..5] = 1, 3, 4, 7, 9,Len = 5。
于是我们知道了LIS的长度为5。
!!!!! 注意。这个1,3,4,7,9不是LIS,它只是存储的对应长度LIS的最小末尾。有了这个末尾,我们就可以一个一个地插入数据。虽然最后一个d[9] = 7更新进去对于这组数据没有什么意义,但是如果后面再出现两个数字 8 和 9,那么就可以把8更新到d[5], 9更新到d[6],得出LIS的长度为6。
然后应该发现一件事情了:在B中插入数据是有序的,而且是进行替换而不需要挪动——也就是说,我们可以使用二分查找,将每一个数字的插入时间优化到O(logN)~~~~~于是算法的时间复杂度就降低到了O(NlogN)~!
#include<bits/stdc++.h>
using namespace std;
int dp[1005];
int main()
{
int n,x;
while(cin >> n)
{
vector<int> dp;
vector<int>::iterator it;
while(n--)
{
cin >> x;
it = lower_bound(dp.begin(), dp.end(), x);
//如果子序列的长度相同,那么最末位的元素较小的在之后的会更加有优势,
//所以我们反过来用dp针对长度相同的情况下最小的末尾元素进行求解。
if(it == dp.end()) dp.push_back(x);
else *it = x; //
}
printf("%d\n",dp.size());
}
}
#include<bits/stdc++.h>
using namespace std;
int dp[1005];
int main()
{
int n,x,len;
while(cin >> n)
{
len = 0;
cin >> x;
dp[0]=x;
for(int i=1; i<n; i++){
cin >> x;
if(x > dp[len]) dp[len++]=x;
else *lower_bound(dp,dp+len,x)=x;
}
printf("%d\n",len+1);
}
}
表示每一个新拦截系统都能拦截所有的导弹,然后遇到一个导弹就往前找看是否有已经使用了的系统能拦截,如果有,直接用;否则重新弄一个系统。最后再看用了几个系统就好了。
//LIS 最长递增序列n*log(n)
int LIS (int *a,int n){
int ans,i,k,*b=new int [n+1];
b[ans=0]=-0x7fffffff;
for(i=0;i<n;i++){
k=lower_bound(b,b+ans+1,a[i])-b;
//upper_bound for Longest Non Descending Sub Sequence;
if (k>ans) b[++ans]=a[i];
else if (b[k]>a[i]) b[k]=a[i];
}
delete b; return ans;
}
二分LIS模板的更多相关文章
- hdu 5046 二分+DLX模板
http://acm.hdu.edu.cn/showproblem.php?pid=5046 n城市建k机场使得,是每个城市最近机场的距离的最大值最小化 二分+DLX 模板题 #include < ...
- LeetCode 二分查找模板 I
模板 #1: int binarySearch(vector<int>& nums, int target){ if(nums.size() == 0) return -1; in ...
- 最长上升子序列(LIS)模板
最长递增(上升)子序列问题:在一列数中寻找一些数,这些数满足:任意两个数a[i]和a[j],若i<j,必有a[i]<a[j],这样最长的子序列称为最长递增(上升)子序列. 考虑两个数a[x ...
- nlogn LIS模板
nlogn 模板 最长上升 #include<bits/stdc++.h> using namespace std; ; int n,x,y,a[N],num[N],d[N],len; / ...
- UVA-10689 Yet another Number Sequence (矩阵二分幂模板)
题目大意:已知递推公式和边缘值,求某项的最后m(0<m<5)位数字. 题目分析:矩阵二分幂的模板题. 代码如下: # include<iostream> # include&l ...
- 求最长上升子序列(Lis模板)
实现过程 定义已知序列数组为dp[]:dp[1…8]=389,207,155,300,299,170,158,65 我们定义一个序列B,然后令 i = 1 to 8 逐个考察这个序列.此外,我们用一个 ...
- 动态规划-最长上升子序列(LIS模板)多解+变形
问题描述 一个数的序列bi,当b1 < b2 < ... < bS的时候,我们称这个序列是上升的.对于给定的一个序列(a1, a2, ..., aN),我们可以得到一些上升的子序列( ...
- 【模板】LIS模板 洛谷P1091 [NOIP2004提高组]合唱队形 [2017年4月计划 动态规划11]
以题写模板. 写了两个:n^2版本与nlogn版本 P1091 合唱队形 题目描述 N位同学站成一排,音乐老师要请其中的(N-K)位同学出列,使得剩下的K位同学排成合唱队形. 合唱队形是指这样的一种队 ...
- LeetCode 二分查找模板 II
模板 #2: int binarySearch(vector<int>& nums, int target){ if(nums.size() == 0) return -1; in ...
随机推荐
- Freemarker 语法详解
Freemarker 在线中文官方参考手册 Freemarker是一款模板引擎,是一种基于模版生成静态文件的通用工具,它是使用纯java编写的,一般用来生成HTML页面. Freemarker 生成静 ...
- Python 爬取网页中JavaScript动态添加的内容(一)
当我们进行网页爬虫时,我们会利用一定的规则从返回的 HTML 数据中提取出有效的信息.但是如果网页中含有 JavaScript 代码,我们必须经过渲染处理才能获得原始数据.此时,如果我们仍采用常规方法 ...
- 【转载】法线贴图Nomal mapping 原理
法线贴图多用在CG动画的渲染以及游戏画面的制作上,将具有高细节的模型通过映射烘焙出法线贴图,贴在低端模型的法线贴图通道上,使之拥有法线贴图的渲染效果,却可以大大降低渲染时需要的面数和计算内容,从而达到 ...
- CodeForces-999D Equalize the Remainders
题目链接 https://vjudge.net/problem/CodeForces-999D 题面 Description You are given an array consisting of ...
- HDU 4681 String 胡搞
设串C的第一个字母在串A中出现的位置是stA, 串C的最后一个字母在串A中出现的位置是edA. 设串C的第一个字母在串B中出现的位置是stB, 串C的最后一个字母在串B中出现的位置是edB. 求出每一 ...
- InfluxDB执行语句管理(query management)
本文属于<InfluxDB系列教程>文章系列,该系列共包括以下 17 部分: InfluxDB学习之InfluxDB的基本概念 InfluxDB学习之InfluxDB的基本操作 Influ ...
- 【bzoj1565】[NOI2009]植物大战僵尸 拓扑排序+最大权闭合图
原文地址:http://www.cnblogs.com/GXZlegend/p/6808268.html 题目描述 输入 输出 仅包含一个整数,表示可以获得的最大能源收入.注意,你也可以选择不进行任何 ...
- apache+mysql+php实现最大负载的方法
1. 生成静态html页面,squid反向代理,apache,MySQL的负载均衡. 2. 可以采取数据缓存的方法,我们通常在统计数据的时候,需要在原始数据的基础上经过计算等一系列操作,才会得到最终的 ...
- PHP高级——抽象类与接口的区别
在学习PHP面向对象时,都会在抽象类与接口上迷惑,作用差不多为什么还那么容易混淆,何不留一去一?但是事实上两者的区别还是很大的,如果能够很好地运用PHP的两个方法,面向对象的程序设计将会更加合理.清晰 ...
- session-cookie 和token登录验证
最近研究了下基于token的身份验证,并将这种机制整合在个人项目中.现在很多网站的认证方式都从传统的seesion+cookie转向token校验.对比传统的校验方式,token确实有更好的扩展性与安 ...