LOJ2565 SDOI2018 旧试题 莫比乌斯反演、三元环计数
这道题的思路似乎可以给很多同时枚举三个量的反演题目提供一个很好的启发……
首先有结论:\(d(ijk) = \sum\limits_{x|i}\sum\limits_{y|j}\sum\limits_{z|k}[x \perp y][y \perp z][x \perp z]\)。正确性证明考虑:对于质数\(p\),设\(i,j,k\)中质因子\(p\)的个数为\(a,b,c\)。在\(x,y,z\)中至多只能有\(1\)个数含质因子\(p\),有以下情况:\(x,y,z\)中都没有\(p\),有1种;\(x\)中有\(p\),有\(a\)种;\(y\)中有\(p\),有\(b\)种;\(z\)中有\(p\),有\(c\)种。那么在\(\sum\limits_{x|i}\sum\limits_{y|j}\sum\limits_{z|k}[x \perp y][y \perp z][x \perp z]\)中\(p\)的贡献为\(a+b+c+1\),而在\(d(ijk)\)中\(p\)的贡献也是\(a+b+c+1\),所以两者等价。
设\(A \leq B \leq C\),\(\frac{x}{y}\)默认下取整。用上述结论化简式子:
\(\begin{align*} \sum\limits_{i=1}^A \sum\limits_{j=1}^B \sum\limits_{k=1}^C d(ijk) & = \sum\limits_{i=1}^A \sum\limits_{j=1}^B \sum\limits_{k=1}^C \sum\limits_{x|i}\sum\limits_{y|j}\sum\limits_{z|k}[x \perp y][y \perp z][x \perp z] \\ & = \sum\limits_{x = 1}^C \sum\limits_{y=1}^C \sum\limits_{z=1}^C[x \perp y][y \perp z][x \perp z] \frac{A}{x} \frac{B}{y} \frac{C}{z} \\ &= \sum\limits_{x = 1}^C \frac{A}{x} \sum\limits_{y=1}^C \frac{B}{y} \sum\limits_{z=1}^C \frac{C}{z} \sum\limits_{p | x , p | y} \mu(p) \sum\limits_{q | x , q | z} \mu(q) \sum\limits_{r | y , r | z} \mu(r) \\ &= \sum\limits_{p=1}^C \mu(p) \sum\limits_{q=1}^C \mu(q) \sum\limits_{r=1}^C \mu(r) \sum\limits_{p | x , q | x}\frac{A}{x} \sum\limits_{p | y , r | y} \frac{B}{y} \sum\limits_{q | z , r | z} \frac{C}{z} \end{align*}\)
\(\sum\limits_{p | x , q | x}\frac{A}{x} = \sum\limits_{lcm(p,q) | x}\frac{A}{x}\),这个可以枚举倍数\(O(nlogn)\)地预处理。所以我们现在需要一种快速的方法枚举\(pqr\)三个量。
不难发现一对\(p,q\)满足条件当且仅当\(\mu(p) \neq 0 , \mu(q) \neq 0 , lcm(p,q) \leq C\)。写一个\((10^5)^2\)的暴力发现好像只有……\(760741\)对满足条件!
那么实际上有用的\(p,q\)不多。不妨构出一个图,对于满足\(\mu(p) \neq 0 , \mu(q) \neq 0 , lcm(p,q) \leq C\)的\(p\)和\(q\)连边\((p,q)\),权值为\(lcm(p,q)\),那么在上述的枚举中\(p \neq q \neq r\)的三元组\((p,q,r)\)在图上对应一个三元环,并且能够轻松地通过这个三元环三条边的权值得到这个三元组的贡献。我们直接三元环计数统计这样的三元环的答案,因为图显然不是构造的所以跑不满根号。
因为打表是不现实的,所以我们还要解决如何快速算出满足\(\mu(p) \neq 0 , \mu(q) \neq 0 , lcm(p,q) \leq C\)的\(p\)和\(q\)。考虑枚举\(gcd(p,q)\),然后枚举\(p\)和\(q\),当\(lcm(p,q) > C\)时退出,枚举的时候check一下\(\mu(p) , \mu(q) , gcd(p,q)\)是否满足条件。这样的复杂度是\(O(Clog^2C)\)的。
上面三元环计算出了\(p \neq q \neq r\)的贡献,\(p=q=r\)的贡献直接枚举一遍,\(p = q \neq r\)的情况在枚举图上的边的时候可以一并计算。然后这道题就做完了。
据说这道题很卡常,所以注意一些细节:1、这道题中间变量用long long存的下,可以避免大量取模;2、存边用vector而不是前向星可以通过内存连续访问争取到更优秀的常数;3、必要的时候可以循环展开。
LOJ2565 SDOI2018 旧试题 莫比乌斯反演、三元环计数的更多相关文章
- loj#6076「2017 山东一轮集训 Day6」三元组 莫比乌斯反演 + 三元环计数
题目大意: 给定\(a, b, c\),求\(\sum \limits_{i = 1}^a \sum \limits_{j = 1}^b \sum \limits_{k = 1}^c [(i, j) ...
- BZOJ5332: [Sdoi2018]旧试题(莫比乌斯反演)
时光匆匆,转眼间又是一年寒暑…… 这是小 Q 同学第二次参加省队选拔赛. 今年,小 Q 痛定思痛,不再冒险偷取试题,而是通过练习旧 试题提升个人实力.可是旧试题太多了,小 Q 没日没夜地做题,却看不到 ...
- loj#2565. 「SDOI2018」旧试题(反演 三元环计数)
题意 题目链接 Sol 神仙反演题.在洛谷上疯狂被卡常 Orz shadowice #include<bits/stdc++.h> #define Pair pair<int, in ...
- 【BZOJ5332】[SDOI2018]旧试题(数论,三元环计数)
[BZOJ5332][SDOI2018]旧试题(数论,三元环计数) 题面 BZOJ 洛谷 题解 如果只有一个\(\sum\),那么我们可以枚举每个答案的出现次数. 首先约数个数这个东西很不爽,就搞一搞 ...
- [SDOI2018] 旧试题
推狮子的部分 \[ \sum_{i=1}^A\sum_{j=1}^B\sum_{k=1}^C\sigma(ijk) =\sum_{i=1}^A\sum_{j=1}^B\sum_{k=1}^C\sum_ ...
- P4619 [SDOI2018]旧试题
题目 P4619 [SDOI2018]旧试题 Ps:山东的题目可真(du)好(liu),思维+码量的神仙题 推式 求\(\sum_{i=1}^A\sum_{j=1}^B\sum_{k=1}^Cd(ij ...
- Codechef SUMCUBE Sum of Cubes 组合、三元环计数
传送门 好久没有做过图论题了-- 考虑\(k\)次方的组合意义,实际上,要求的所有方案中导出子图边数的\(k\)次方,等价于有顺序地选出其中\(k\)条边,计算它们在哪一些图中出现过,将所有方案计算出 ...
- BZOJ.5407.girls/CF985G. Team Players(三元环计数+容斥)
题面 传送门(bzoj) 传送门(CF) \(llx\)身边妹子成群,这天他需要从\(n\)个妹子中挑出\(3\)个出去浪,但是妹子之间会有冲突,表现为\(i,j\)之间连有一条边\((i,j)\), ...
- [hdu 6184 Counting Stars(三元环计数)
hdu 6184 Counting Stars(三元环计数) 题意: 给一张n个点m条边的无向图,问有多少个\(A-structure\) 其中\(A-structure\)满足\(V=(A,B,C, ...
随机推荐
- java selenium webdriver第二讲 页面元素定位
自动化测试实施过程中,测试程序中常用的页面操作有三个步骤 1.定位网页上的页面元素,并存储到一个变量中 2.对变量中存储的页面元素进行操作,单击,下拉或者输入文字等 3.设定页面元素的操作值,比如,选 ...
- system中有空格怎么办
原始路径: C:\\Program Files\\putty\\putty.exe 改为: char *cmd="C:\\\"Program Files\"\\putty ...
- angular之增删改查
<!DOCTYPE html> <html lang="en" ng-app="app"> <head> <meta ...
- oracle 密码默认180天过期
alter profile default limit password_life_time unlimited; alter user username identified by 'pwd';
- 如何创建和配置Solaris10 zones (ZT)
http://thegeekdiary.com/how-to-create-and-configure-solaris-10-zones/ Solaris zones enables a softwa ...
- 使用百度地图API进行坐标系转换
最近在做移动APP的定位功能的时候发现系统GPS获取的位置信息再从百度地图API获取的实际地址总是有误差,偏离了好几个街道,但百度地图本身没这个问题.在网上查找一番发现了地图的坐标系一说,下面简单介绍 ...
- Python 标准库 -> Pprint 模块 -> 用于打印 Python 数据结构
使用 pprint 模块 pprint 模块( pretty printer ) 用于打印 Python 数据结构. 当你在命令行下打印特定数据结构时你会发现它很有用(输出格式比较整齐, 便于阅读). ...
- 部署和调优 1.7 samba 部署和优化-1
Samba服务可以实现linux上共享一个目录,windows上面访问. 安装 yum install -y samba samba-client 配置文件在 vim /etc/samba/smb.c ...
- JavaScript的流程控制语句
JS的核心ECMAScript规定的流程控制语句和其他的程序设计语言还是蛮相似的.我们选择一些实用的例子来看一下这些语句.顺序结构我们在这里就不再提到,直接说条件和循环以及其他语句.一.条件选择结构 ...
- jquery datatable 多行(单行)选择(select),行获取/行删除
jquery datatable 多行(单行)选择(select),行获取/行删除 代码展示 // 示例数据源 var dataSet = [ ['Tasman','Internet Explorer ...