BSGS

(感觉这东西还是要写一下)

BSGS主要用于求解形如\(x^k=y\pmod p\)(注意这里p与x互质)这样的方程的最小正整数解的问题

设\(m=\lceil\sqrt p\rceil,k=am-b,a\in[1,m],b\in[0,m)\)

那么上面的方程可以变形成\(x^{am}=yx^b\pmod p\)

枚举\(b\),计算出右边的值存到\(map\)中,枚举\(a\)查表即可

Q:可以枚举左边存表,右边查嘛?

A:可以,但是左边查到表可以直接输出...

顺便一说,map里要存最大值,这样你算出的答案是最小的,所以能更新就更新

复杂度:\(O(\sqrt plogp)\)

模板题[TJOI2007]可爱的质数

#include<bits/stdc++.h>
using namespace std;
int p;
map<int,int>M;
int ksm(int x,int y){
int s=1;
while(y){if(y&1)s=1ll*s*x%p;x=1ll*x*x%p;y>>=1;}
return s;
}
int main(){
int x,y;
cin>>p>>x>>y;
int m=sqrt(p)+1;
int s=y;
for(int i=0;i<m;i++){
M[s]=i;//能更新就更新
s=1ll*s*x%p;
}
int t=ksm(x,m);s=1;
for(int i=1;i<=m;i++){
s=1ll*s*t%p;
if(M.count(s)){printf("%d\n",i*m-M[s]);return 0;}
}
puts("no solution");return 0;
}

扩展BSGS

当p不是素数时(这时x,p不一定互质),

设d=gcd(x,p),

若d不整除y,那么只有y=1时,x=0,其他情况均无解

若d整除y,当d=1时,直接BSGS

否则有$$x^k=y\pmod p$$

\[x^{k-1}×\frac{x}{d}=\frac{y}{d}\pmod{\frac{p}{d}}
\]

继续分解到d=1为止.

\[x^{k-t}×\frac{x^t}{\prod d_i}=\frac{y}{\prod d_i}\pmod{\frac{p}{\prod d_i}}
\]

然后首先检验x=[0,t)是否为解,显然t是log级别的

如果[0,t)都不是解,由于\(x,\frac{p}{\prod d_i}\)互质,BSGS求解即可

最后记得答案加上t啊

模板题[SPOJ3105]MOD

#include<bits/stdc++.h>
using namespace std;
int re(){
int x=0,w=1;char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-')w=-1;ch=getchar();}
while(ch>='0'&&ch<='9')x=x*10+ch-'0',ch=getchar();
return x*w;
}
int p;
map<int,int>M;
void mul(int&x,int y){x=1ll*x*y%p;}
int ksm(int x,int y){
int s=1;
while(y){if(y&1)mul(s,x);mul(x,x);y>>=1;}
return s;
}
void exbsgs(int x,int y){
if(y==1){puts("0");return;}
int d=__gcd(x,p),k=1,t=0;
while(d^1){
if(y%d){puts("No Solution");return;}
++t;y/=d;p/=d;mul(k,x/d);
if(y==k){printf("%d\n",t);return;}
d=__gcd(x,p);
}
int s=y;M.clear();int m=sqrt(p)+1;
for(int i=0;i<m;i++){
M[s]=i;mul(s,x);
}
s=k;k=ksm(x,m);
for(int i=1;i<=m;i++){
mul(s,k);
if(M[s]){printf("%d\n",i*m-M[s]+t);return;}
}
puts("No Solution");
}
int main(){
int x,y;
while(1){
x=re(),p=re(),y=re();
if(!x&&!p&&!y)break;
x%=p;y%=p;
exbsgs(x,y);
}
return 0;
}

[note]BSGS & exBSGS的更多相关文章

  1. BSGS&EXBSGS 大手拉小手,大步小步走

    大步小步走算法处理这样的问题: A^x = B (mod C) 求满足条件的最小的x(可能无解) 其中,A/B/C都可以是很大的数(long long以内) 先分类考虑一下: 当(A,C)==1 即A ...

  2. BSGS&ExBSGS

    BSGS&ExBSGS 求解形如 \[a^x\equiv b\pmod p\] 的高次同余方程 BSGS 假装\(gcd(a,p)=1\). 设\(m=\lceil\sqrt p \rceil ...

  3. 算法笔记--BSGS && exBSGS 模板

    https://www.cnblogs.com/sdzwyq/p/9900650.html 模板: unordered_map<int, int> mp; LL q_pow(LL n, L ...

  4. BSGS && EXBSGS

    基础BSGS 用处是什么呢w 大步小步发(Baby-Step-Giant-Step,简称BSGS),可以用来高效求解形如\(A^x≡B(mod C)\)(C为素数)的同余方程. 常用于求解离散对数问题 ...

  5. BSGS+exBSGS POJ2417+POJ3243

    a^x=b(mod p)求x,利用分块的思想根号p的复杂度求答案,枚举同余式两端的变量,用hash的方法去找最小的答案(PS:hash看上去很像链式前向星就很有好感).然后如果p不是质数时,就利用同余 ...

  6. Noip前的大抱佛脚----数论

    目录 数论 知识点 Exgcd 逆元 gcd 欧拉函数\(\varphi(x)\) CRT&EXCRT BSGS&EXBSGS FFT/NTT/MTT/FWT 组合公式 斯特林数 卡塔 ...

  7. 各种友(e)善(xin)数论总集(未完待续),从入门到绝望

    目录 快速幂 扩展欧几里得 GCD 扩展欧几里得 同余系列 同余方程 同余方程组 一点想法 高次同余方程 BSGS exBSGS 线性筛素数 埃式筛 欧拉筛 欧拉函数 讲解 两道水题 法雷级数 可见点 ...

  8. REHの收藏列表

    搬运自本人的AcWing,所以那里的文章会挺多. 友链(同类文章) :bztMinamoto 世外明月 mlystdcall 新人手册:AcWing入门使用指南 前言 有看到好文欢迎推荐(毛遂自荐也可 ...

  9. ZROI 2019 暑期游记

    ZROI 游记 在自闭中度过了17天 挖了无数坑,填了一点坑 所以还是有好多坑啊zblzbl 挖坑总集: 时间分治 差分约束 Prufer序列 容斥 树上数据结构 例题C (和后面的例题) 点分 最大 ...

随机推荐

  1. C#与数据结构--图的遍历

    http://www.cnblogs.com/abatei/archive/2008/06/06/1215114.html 8.2 图的存储结构 图的存储结构除了要存储图中各个顶点的本身的信息外,同时 ...

  2. 雷锋沙龙 ppt 演讲内容分享(xss,流量劫持的利用)

    http://www.pkav.net/XSS.png?from=timeline&isappinstalled=0

  3. tab menu

    <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...

  4. C2:抽象工厂 Abstract Factory

    提供一个创建一系列相关或相互依赖对象的接口,而无需指定它们具体的类. 应用场景: 一系列相互依赖的对象有不同的具体实现.提供一种“封装机制”来避免客户程序和这种“多系列具体对象创建工作”的紧耦合 UM ...

  5. 数据访问公共类(BaseProvider)

    using System; using System.Data; using System.Data.Common; using System.Configuration; using System. ...

  6. ASP.NET综合管理ERP系统100%源代码+所有开发文档

    该系统开发环境为:VS2010,数据库採用SQL Server,框架为ASP.NET. 源代码包含所有文档说明,代码简单易懂,凝视完整. 提示:假设没有安装水晶报表系统执行会报错,报表安装程序已经打包 ...

  7. http://m2eclipse.sonatype.org/sites/m2e地址更换了

    http://m2eclipse.sonatype.org/sites/m2e 更换为 https://repository.sonatype.org/content/sites/forge-site ...

  8. scrapy框架爬取豆瓣读书(1)

    1.scrapy框架 Scrapy,Python开发的一个快速.高层次的屏幕抓取和web抓取框架,用于抓取web站点并从页面中提取结构化的数据.Scrapy用途广泛,可以用于数据挖掘.监测和自动化测试 ...

  9. mysql中去重复记录

    Distinct 这个只能放在查询语句的最前面 参考 : https://www.cnblogs.com/lushilin/p/6187743.html

  10. MySQL一:初识数据库

    阅读目录 一 数据库是什么 二 数据库的概念 三 MySQL介绍 四 下载安装 五 MySQL软件基本管理 一 数据库是什么 之前所学,数据要永久保存,比如用户注册的用户信息,都是保存于文件中,而文件 ...