BSGS

(感觉这东西还是要写一下)

BSGS主要用于求解形如\(x^k=y\pmod p\)(注意这里p与x互质)这样的方程的最小正整数解的问题

设\(m=\lceil\sqrt p\rceil,k=am-b,a\in[1,m],b\in[0,m)\)

那么上面的方程可以变形成\(x^{am}=yx^b\pmod p\)

枚举\(b\),计算出右边的值存到\(map\)中,枚举\(a\)查表即可

Q:可以枚举左边存表,右边查嘛?

A:可以,但是左边查到表可以直接输出...

顺便一说,map里要存最大值,这样你算出的答案是最小的,所以能更新就更新

复杂度:\(O(\sqrt plogp)\)

模板题[TJOI2007]可爱的质数

#include<bits/stdc++.h>
using namespace std;
int p;
map<int,int>M;
int ksm(int x,int y){
int s=1;
while(y){if(y&1)s=1ll*s*x%p;x=1ll*x*x%p;y>>=1;}
return s;
}
int main(){
int x,y;
cin>>p>>x>>y;
int m=sqrt(p)+1;
int s=y;
for(int i=0;i<m;i++){
M[s]=i;//能更新就更新
s=1ll*s*x%p;
}
int t=ksm(x,m);s=1;
for(int i=1;i<=m;i++){
s=1ll*s*t%p;
if(M.count(s)){printf("%d\n",i*m-M[s]);return 0;}
}
puts("no solution");return 0;
}

扩展BSGS

当p不是素数时(这时x,p不一定互质),

设d=gcd(x,p),

若d不整除y,那么只有y=1时,x=0,其他情况均无解

若d整除y,当d=1时,直接BSGS

否则有$$x^k=y\pmod p$$

\[x^{k-1}×\frac{x}{d}=\frac{y}{d}\pmod{\frac{p}{d}}
\]

继续分解到d=1为止.

\[x^{k-t}×\frac{x^t}{\prod d_i}=\frac{y}{\prod d_i}\pmod{\frac{p}{\prod d_i}}
\]

然后首先检验x=[0,t)是否为解,显然t是log级别的

如果[0,t)都不是解,由于\(x,\frac{p}{\prod d_i}\)互质,BSGS求解即可

最后记得答案加上t啊

模板题[SPOJ3105]MOD

#include<bits/stdc++.h>
using namespace std;
int re(){
int x=0,w=1;char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-')w=-1;ch=getchar();}
while(ch>='0'&&ch<='9')x=x*10+ch-'0',ch=getchar();
return x*w;
}
int p;
map<int,int>M;
void mul(int&x,int y){x=1ll*x*y%p;}
int ksm(int x,int y){
int s=1;
while(y){if(y&1)mul(s,x);mul(x,x);y>>=1;}
return s;
}
void exbsgs(int x,int y){
if(y==1){puts("0");return;}
int d=__gcd(x,p),k=1,t=0;
while(d^1){
if(y%d){puts("No Solution");return;}
++t;y/=d;p/=d;mul(k,x/d);
if(y==k){printf("%d\n",t);return;}
d=__gcd(x,p);
}
int s=y;M.clear();int m=sqrt(p)+1;
for(int i=0;i<m;i++){
M[s]=i;mul(s,x);
}
s=k;k=ksm(x,m);
for(int i=1;i<=m;i++){
mul(s,k);
if(M[s]){printf("%d\n",i*m-M[s]+t);return;}
}
puts("No Solution");
}
int main(){
int x,y;
while(1){
x=re(),p=re(),y=re();
if(!x&&!p&&!y)break;
x%=p;y%=p;
exbsgs(x,y);
}
return 0;
}

[note]BSGS & exBSGS的更多相关文章

  1. BSGS&EXBSGS 大手拉小手,大步小步走

    大步小步走算法处理这样的问题: A^x = B (mod C) 求满足条件的最小的x(可能无解) 其中,A/B/C都可以是很大的数(long long以内) 先分类考虑一下: 当(A,C)==1 即A ...

  2. BSGS&ExBSGS

    BSGS&ExBSGS 求解形如 \[a^x\equiv b\pmod p\] 的高次同余方程 BSGS 假装\(gcd(a,p)=1\). 设\(m=\lceil\sqrt p \rceil ...

  3. 算法笔记--BSGS && exBSGS 模板

    https://www.cnblogs.com/sdzwyq/p/9900650.html 模板: unordered_map<int, int> mp; LL q_pow(LL n, L ...

  4. BSGS && EXBSGS

    基础BSGS 用处是什么呢w 大步小步发(Baby-Step-Giant-Step,简称BSGS),可以用来高效求解形如\(A^x≡B(mod C)\)(C为素数)的同余方程. 常用于求解离散对数问题 ...

  5. BSGS+exBSGS POJ2417+POJ3243

    a^x=b(mod p)求x,利用分块的思想根号p的复杂度求答案,枚举同余式两端的变量,用hash的方法去找最小的答案(PS:hash看上去很像链式前向星就很有好感).然后如果p不是质数时,就利用同余 ...

  6. Noip前的大抱佛脚----数论

    目录 数论 知识点 Exgcd 逆元 gcd 欧拉函数\(\varphi(x)\) CRT&EXCRT BSGS&EXBSGS FFT/NTT/MTT/FWT 组合公式 斯特林数 卡塔 ...

  7. 各种友(e)善(xin)数论总集(未完待续),从入门到绝望

    目录 快速幂 扩展欧几里得 GCD 扩展欧几里得 同余系列 同余方程 同余方程组 一点想法 高次同余方程 BSGS exBSGS 线性筛素数 埃式筛 欧拉筛 欧拉函数 讲解 两道水题 法雷级数 可见点 ...

  8. REHの收藏列表

    搬运自本人的AcWing,所以那里的文章会挺多. 友链(同类文章) :bztMinamoto 世外明月 mlystdcall 新人手册:AcWing入门使用指南 前言 有看到好文欢迎推荐(毛遂自荐也可 ...

  9. ZROI 2019 暑期游记

    ZROI 游记 在自闭中度过了17天 挖了无数坑,填了一点坑 所以还是有好多坑啊zblzbl 挖坑总集: 时间分治 差分约束 Prufer序列 容斥 树上数据结构 例题C (和后面的例题) 点分 最大 ...

随机推荐

  1. Python Requests post并将得到结果转换为json

    Python Requests post并将得到结果转换为json 学习了:https://blog.csdn.net/sinat_28680819/article/details/70940325  ...

  2. 如何看一个VC工程具体是什么工程?

    VC6等可以创建MFC, Win32等工程,拿到一个工程,怎么判断是什么工程呢? VC6全文检索看看有没有theApp 如果有一般就是MFC的 (VS?)看看工程设置,入口点函数写的是什么,/subs ...

  3. C# Redis Server分布式缓存编程(一)

    这篇文章我将介绍如果用最简洁的方式配置Redis Server, 以及如何使用C#和它交互编程 一. 背景介绍 Redis是最快的key-value分布式缓存之一 缺点: 没有本地数据缓冲, 目前还没 ...

  4. python raise assert

    class MyException(Exception): def __init__(self,error_msg): self.error_msg=error_msg def __str__(sel ...

  5. js 导入json配置文件

    import AA from './menu.json' console.log(AA) 匹配好路径

  6. 【BIEE】03_BIEE数据源配置

    声明:此时说的是Oracle数据源配置 BIEE数据源配置有两种方法 ①直接使用字符串连接 ②将tnsnames.ora文件覆盖到obiee目录下 直接使用字符串 直接使用字符串连接很简单 首先打开资 ...

  7. SQL中拆分字符串substr及统计字符出现频数replace用法实例讲解

    一.拆分字符串为若干行 例一:要求将表emp中的'king'按照每行一个单词拆成四行 注意:substr(str,pos):截取pos位置开始的字符: substr(str,pos,len):从pos ...

  8. 怎么以最新汇率牌价计算XX美元相当于多少人民币

    http://www.meiguozhuji.com/exchange-rate 美国主机都是以美元来报价的,至于XX美元相当于多少人民币,很多朋友都不太清楚.为了让大家更直接的了解购买美国主机需要花 ...

  9. UIWebView 加载网页、文件、 html

    UIWebView  是用来加载加载网页数据的一个框.UIWebView可以用来加载pdf word doc 等等文件 生成webview 有两种方法,1.通过storyboard 拖拽 2.通过al ...

  10. Android下 布局加边框 指定背景色 半透明

    背景设置为自定义的shape文件: <!-- <?xml version="1.0" encoding="utf-8"?><shape ...