[note]BSGS & exBSGS
BSGS
(感觉这东西还是要写一下)
BSGS主要用于求解形如\(x^k=y\pmod p\)(注意这里p与x互质)这样的方程的最小正整数解的问题
设\(m=\lceil\sqrt p\rceil,k=am-b,a\in[1,m],b\in[0,m)\)
那么上面的方程可以变形成\(x^{am}=yx^b\pmod p\)
枚举\(b\),计算出右边的值存到\(map\)中,枚举\(a\)查表即可
Q:可以枚举左边存表,右边查嘛?
A:可以,但是左边查到表可以直接输出...
顺便一说,map里要存最大值,这样你算出的答案是最小的,所以能更新就更新
复杂度:\(O(\sqrt plogp)\)
模板题[TJOI2007]可爱的质数
#include<bits/stdc++.h>
using namespace std;
int p;
map<int,int>M;
int ksm(int x,int y){
int s=1;
while(y){if(y&1)s=1ll*s*x%p;x=1ll*x*x%p;y>>=1;}
return s;
}
int main(){
int x,y;
cin>>p>>x>>y;
int m=sqrt(p)+1;
int s=y;
for(int i=0;i<m;i++){
M[s]=i;//能更新就更新
s=1ll*s*x%p;
}
int t=ksm(x,m);s=1;
for(int i=1;i<=m;i++){
s=1ll*s*t%p;
if(M.count(s)){printf("%d\n",i*m-M[s]);return 0;}
}
puts("no solution");return 0;
}
扩展BSGS
当p不是素数时(这时x,p不一定互质),
设d=gcd(x,p),
若d不整除y,那么只有y=1时,x=0,其他情况均无解
若d整除y,当d=1时,直接BSGS
否则有$$x^k=y\pmod p$$
\]
继续分解到d=1为止.
\]
然后首先检验x=[0,t)是否为解,显然t是log级别的
如果[0,t)都不是解,由于\(x,\frac{p}{\prod d_i}\)互质,BSGS求解即可
最后记得答案加上t啊
模板题[SPOJ3105]MOD
#include<bits/stdc++.h>
using namespace std;
int re(){
int x=0,w=1;char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-')w=-1;ch=getchar();}
while(ch>='0'&&ch<='9')x=x*10+ch-'0',ch=getchar();
return x*w;
}
int p;
map<int,int>M;
void mul(int&x,int y){x=1ll*x*y%p;}
int ksm(int x,int y){
int s=1;
while(y){if(y&1)mul(s,x);mul(x,x);y>>=1;}
return s;
}
void exbsgs(int x,int y){
if(y==1){puts("0");return;}
int d=__gcd(x,p),k=1,t=0;
while(d^1){
if(y%d){puts("No Solution");return;}
++t;y/=d;p/=d;mul(k,x/d);
if(y==k){printf("%d\n",t);return;}
d=__gcd(x,p);
}
int s=y;M.clear();int m=sqrt(p)+1;
for(int i=0;i<m;i++){
M[s]=i;mul(s,x);
}
s=k;k=ksm(x,m);
for(int i=1;i<=m;i++){
mul(s,k);
if(M[s]){printf("%d\n",i*m-M[s]+t);return;}
}
puts("No Solution");
}
int main(){
int x,y;
while(1){
x=re(),p=re(),y=re();
if(!x&&!p&&!y)break;
x%=p;y%=p;
exbsgs(x,y);
}
return 0;
}
[note]BSGS & exBSGS的更多相关文章
- BSGS&EXBSGS 大手拉小手,大步小步走
大步小步走算法处理这样的问题: A^x = B (mod C) 求满足条件的最小的x(可能无解) 其中,A/B/C都可以是很大的数(long long以内) 先分类考虑一下: 当(A,C)==1 即A ...
- BSGS&ExBSGS
BSGS&ExBSGS 求解形如 \[a^x\equiv b\pmod p\] 的高次同余方程 BSGS 假装\(gcd(a,p)=1\). 设\(m=\lceil\sqrt p \rceil ...
- 算法笔记--BSGS && exBSGS 模板
https://www.cnblogs.com/sdzwyq/p/9900650.html 模板: unordered_map<int, int> mp; LL q_pow(LL n, L ...
- BSGS && EXBSGS
基础BSGS 用处是什么呢w 大步小步发(Baby-Step-Giant-Step,简称BSGS),可以用来高效求解形如\(A^x≡B(mod C)\)(C为素数)的同余方程. 常用于求解离散对数问题 ...
- BSGS+exBSGS POJ2417+POJ3243
a^x=b(mod p)求x,利用分块的思想根号p的复杂度求答案,枚举同余式两端的变量,用hash的方法去找最小的答案(PS:hash看上去很像链式前向星就很有好感).然后如果p不是质数时,就利用同余 ...
- Noip前的大抱佛脚----数论
目录 数论 知识点 Exgcd 逆元 gcd 欧拉函数\(\varphi(x)\) CRT&EXCRT BSGS&EXBSGS FFT/NTT/MTT/FWT 组合公式 斯特林数 卡塔 ...
- 各种友(e)善(xin)数论总集(未完待续),从入门到绝望
目录 快速幂 扩展欧几里得 GCD 扩展欧几里得 同余系列 同余方程 同余方程组 一点想法 高次同余方程 BSGS exBSGS 线性筛素数 埃式筛 欧拉筛 欧拉函数 讲解 两道水题 法雷级数 可见点 ...
- REHの收藏列表
搬运自本人的AcWing,所以那里的文章会挺多. 友链(同类文章) :bztMinamoto 世外明月 mlystdcall 新人手册:AcWing入门使用指南 前言 有看到好文欢迎推荐(毛遂自荐也可 ...
- ZROI 2019 暑期游记
ZROI 游记 在自闭中度过了17天 挖了无数坑,填了一点坑 所以还是有好多坑啊zblzbl 挖坑总集: 时间分治 差分约束 Prufer序列 容斥 树上数据结构 例题C (和后面的例题) 点分 最大 ...
随机推荐
- 基于Storyboard的创建多分支NavigationController的方法
如果遇到本文图片只展示一半的情况,多数情况下刷新一下浏览器即可 遇到的问题 我在写程序的时候碰到这样一个简单的需求,用户点击"我的XX"这样的功能时候,需要判断当前用户是否已经登录 ...
- Intellij output 中文乱码
使用intellij有一段时间了,intellij output中文乱码,每次使用这两点解决,就可以解决乱码问题. 1.修改启动参数 修改安装Intellij目录下的C:\Program Files ...
- 13.1Springboot 之 静态资源路径配置
Spring 静态资源路径是指系统可以直接访问的路径,且路径下的所有文件均可被用户直接读取. 在Springboot中默认的静态资源路径有:classpath:/META-INF/resources/ ...
- Android学习(八) 打开Activity
在Android中打开窗口有两种方式,第一种是不需要返回值的,第二种是带返回值的. Main.xml文件,程序从这个窗口开始执行. <LinearLayout xmlns:android=&qu ...
- python数据类型整理
Python中常见的数据结构可以统称为容器(container).序列(如列表和元组).映射(如字典)以及集合(set)是三类主要的容器. 一.序列(列表.元组和字符串) 序列中的每个元素都有自己的编 ...
- 扩展Unity3D编辑器的脚本模板
近期在学习Shader时感觉Shader语言參数众多.语法诡异,假设每次都从头開始写Shader一定是一件痛苦的事情.假设能够在本地定义好一组标准的Shader模板,这样当我们须要实现某些效果相似 ...
- 【VBA】隐藏正在使用的工作簿
正在使用的工作簿,嫌窗口太多,不利于操作,想把窗口隐藏,该怎么做呢? Public Sub 隐藏正在使用的工作簿() Application.Visible = False MsgBox " ...
- 公网通过代理访问阿里云vpc redis
前提条件 如果您需要从本地 PC 端访问 Redis 实例进行数据操作,可以通过在 ECS 上配置端口映射或者端口转发实现.但必须符合以下前提条件: 若 Redis 实例属于专有网络(VPC),ECS ...
- webuploader插件使用中的一点东西
本人绝对菜鸟,高手勿喷 菜鸟开发中的解决方法,高手勿喷 1.针对同一应用中不同的类别,存放不同的路径 在页面中添加,hidden属性的标记,如: type="hidden" ...
- sgu101-欧拉回路
101. Domino time limit per test: 0.25 sec. memory limit per test: 4096 KB Dominoes – game played wi ...