BSGS

(感觉这东西还是要写一下)

BSGS主要用于求解形如\(x^k=y\pmod p\)(注意这里p与x互质)这样的方程的最小正整数解的问题

设\(m=\lceil\sqrt p\rceil,k=am-b,a\in[1,m],b\in[0,m)\)

那么上面的方程可以变形成\(x^{am}=yx^b\pmod p\)

枚举\(b\),计算出右边的值存到\(map\)中,枚举\(a\)查表即可

Q:可以枚举左边存表,右边查嘛?

A:可以,但是左边查到表可以直接输出...

顺便一说,map里要存最大值,这样你算出的答案是最小的,所以能更新就更新

复杂度:\(O(\sqrt plogp)\)

模板题[TJOI2007]可爱的质数

#include<bits/stdc++.h>
using namespace std;
int p;
map<int,int>M;
int ksm(int x,int y){
int s=1;
while(y){if(y&1)s=1ll*s*x%p;x=1ll*x*x%p;y>>=1;}
return s;
}
int main(){
int x,y;
cin>>p>>x>>y;
int m=sqrt(p)+1;
int s=y;
for(int i=0;i<m;i++){
M[s]=i;//能更新就更新
s=1ll*s*x%p;
}
int t=ksm(x,m);s=1;
for(int i=1;i<=m;i++){
s=1ll*s*t%p;
if(M.count(s)){printf("%d\n",i*m-M[s]);return 0;}
}
puts("no solution");return 0;
}

扩展BSGS

当p不是素数时(这时x,p不一定互质),

设d=gcd(x,p),

若d不整除y,那么只有y=1时,x=0,其他情况均无解

若d整除y,当d=1时,直接BSGS

否则有$$x^k=y\pmod p$$

\[x^{k-1}×\frac{x}{d}=\frac{y}{d}\pmod{\frac{p}{d}}
\]

继续分解到d=1为止.

\[x^{k-t}×\frac{x^t}{\prod d_i}=\frac{y}{\prod d_i}\pmod{\frac{p}{\prod d_i}}
\]

然后首先检验x=[0,t)是否为解,显然t是log级别的

如果[0,t)都不是解,由于\(x,\frac{p}{\prod d_i}\)互质,BSGS求解即可

最后记得答案加上t啊

模板题[SPOJ3105]MOD

#include<bits/stdc++.h>
using namespace std;
int re(){
int x=0,w=1;char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-')w=-1;ch=getchar();}
while(ch>='0'&&ch<='9')x=x*10+ch-'0',ch=getchar();
return x*w;
}
int p;
map<int,int>M;
void mul(int&x,int y){x=1ll*x*y%p;}
int ksm(int x,int y){
int s=1;
while(y){if(y&1)mul(s,x);mul(x,x);y>>=1;}
return s;
}
void exbsgs(int x,int y){
if(y==1){puts("0");return;}
int d=__gcd(x,p),k=1,t=0;
while(d^1){
if(y%d){puts("No Solution");return;}
++t;y/=d;p/=d;mul(k,x/d);
if(y==k){printf("%d\n",t);return;}
d=__gcd(x,p);
}
int s=y;M.clear();int m=sqrt(p)+1;
for(int i=0;i<m;i++){
M[s]=i;mul(s,x);
}
s=k;k=ksm(x,m);
for(int i=1;i<=m;i++){
mul(s,k);
if(M[s]){printf("%d\n",i*m-M[s]+t);return;}
}
puts("No Solution");
}
int main(){
int x,y;
while(1){
x=re(),p=re(),y=re();
if(!x&&!p&&!y)break;
x%=p;y%=p;
exbsgs(x,y);
}
return 0;
}

[note]BSGS & exBSGS的更多相关文章

  1. BSGS&EXBSGS 大手拉小手,大步小步走

    大步小步走算法处理这样的问题: A^x = B (mod C) 求满足条件的最小的x(可能无解) 其中,A/B/C都可以是很大的数(long long以内) 先分类考虑一下: 当(A,C)==1 即A ...

  2. BSGS&ExBSGS

    BSGS&ExBSGS 求解形如 \[a^x\equiv b\pmod p\] 的高次同余方程 BSGS 假装\(gcd(a,p)=1\). 设\(m=\lceil\sqrt p \rceil ...

  3. 算法笔记--BSGS && exBSGS 模板

    https://www.cnblogs.com/sdzwyq/p/9900650.html 模板: unordered_map<int, int> mp; LL q_pow(LL n, L ...

  4. BSGS && EXBSGS

    基础BSGS 用处是什么呢w 大步小步发(Baby-Step-Giant-Step,简称BSGS),可以用来高效求解形如\(A^x≡B(mod C)\)(C为素数)的同余方程. 常用于求解离散对数问题 ...

  5. BSGS+exBSGS POJ2417+POJ3243

    a^x=b(mod p)求x,利用分块的思想根号p的复杂度求答案,枚举同余式两端的变量,用hash的方法去找最小的答案(PS:hash看上去很像链式前向星就很有好感).然后如果p不是质数时,就利用同余 ...

  6. Noip前的大抱佛脚----数论

    目录 数论 知识点 Exgcd 逆元 gcd 欧拉函数\(\varphi(x)\) CRT&EXCRT BSGS&EXBSGS FFT/NTT/MTT/FWT 组合公式 斯特林数 卡塔 ...

  7. 各种友(e)善(xin)数论总集(未完待续),从入门到绝望

    目录 快速幂 扩展欧几里得 GCD 扩展欧几里得 同余系列 同余方程 同余方程组 一点想法 高次同余方程 BSGS exBSGS 线性筛素数 埃式筛 欧拉筛 欧拉函数 讲解 两道水题 法雷级数 可见点 ...

  8. REHの收藏列表

    搬运自本人的AcWing,所以那里的文章会挺多. 友链(同类文章) :bztMinamoto 世外明月 mlystdcall 新人手册:AcWing入门使用指南 前言 有看到好文欢迎推荐(毛遂自荐也可 ...

  9. ZROI 2019 暑期游记

    ZROI 游记 在自闭中度过了17天 挖了无数坑,填了一点坑 所以还是有好多坑啊zblzbl 挖坑总集: 时间分治 差分约束 Prufer序列 容斥 树上数据结构 例题C (和后面的例题) 点分 最大 ...

随机推荐

  1. 2017.7.18 windows下ELK环境搭建

    参考来自:Windows环境下ELK平台的搭建 另一篇博文:2017.7.18 linux下ELK环境搭建 0 版本说明 因为ELK从5.0开始只支持jdk 1.8,但是项目中使用的是JDK 1.7, ...

  2. 剑指offer——链表相关问题总结

    首先统一链表的数据结构为: struct ListNode { int val; struct ListNode *next; ListNode(int x) :val(x), next(NULL) ...

  3. MySql RESTRICT CASCADE SET NULL

    主表,从表[MySql] //http://my.oschina.net/cart/blog/277624 空.RESTRICT.NO ACTION 删除:从表记录不存在时,主表才可以删除.删除从表, ...

  4. 改变datagrid中指定单元格的值

    //自己设置编辑时显示的内容 $('#purchasegroupname'+index).html(name); //单元格真实内容 $('#material_datagrid').datagrid( ...

  5. 为什么 Linux 的 htop 命令完胜 top 命令

    在 Linux 系统中,top 命令用来显示系统中正在运行的进程的实时状态,它显示了一些非常有用的信息,比如 CPU 利用情况.内存消耗情况,以及每个进程情况等.但是,你知道吗?还有另外一个命令行工具 ...

  6. java如何实现多个线程并发运行

    随着计算机技术的发展,编程模型也越来越复杂多样化.但多线程编程模型是目前计算机系统架构的最终模型.随着CPU主频的不断攀升,X86架构的硬件已经成为瓶,在这种架构的CPU主频最高为4G.事实上目前3. ...

  7. 运行./cpp.sh,显示command not found

    首先运行ls -l 查看这个文件的属性是否可执行drwxrwxrwx对当前用户必须具有可执行权限(即含有x符号)如果没有可以运行chmod 777 cpp.sh 添加可执行权限

  8. 工作总结 页面通过ajax 动态绑定 列表页面 列表每一项的事件 事件触发多次

    遇到一个问题 困惑了两天  页面的事件不知道为什么触发多次 试了各种办法 对比了之前的页面 各种测试 不是js css 外部链接 重复加载问题  也不是嵌套的 div 问题 各种都试过 最终发现 是 ...

  9. Linux Mint (应用软件— 虚拟机:Virtualbox)

    近期想自己折腾一下Linux系统本身.比方Linux裁减或者移植.裁减或者移植Linux是一件麻烦的事情.而且出错后会影响到当前的系统.怎样才干不影响当前机器上的系统呢,于是便想到了虚拟机.在当前系统 ...

  10. java中volatile关键字的含义(转)

    在java线程并发处理中,有一个关键字volatile的使用目前存在很大的混淆,以为使用这个关键字,在进行多线程并发处理的时候就可以万事大吉. Java语言是支持多线程的,为了解决线程并发的问题,在语 ...