题目链接:http://acm.csu.edu.cn/OnlineJudge/problem.php?id=1616

1616: Heaps

Time Limit: 2 Sec  Memory Limit: 128 MB
Submit:
48  Solved: 9
[Submit][Status][Web
Board
]

Description

Zuosige always has bad luck. Recently, he is in hospital because of
pneumonia. While he is taking his injection, he feels extremely bored. However,
clever Zuosige comes up with a new game.

Zuosige knows there is a typical problem called Merging Stones. In the
problem, you have N heaps of stones and you are going to merging them into one
heap. The only restriction is that you can only merging adjacent heaps and the
cost of a merging operation is the total number of stones in the two heaps
merged. Finally, you are asked to answer the minimum cost to accomplish the
merging.

However, Zuosige think this problem is too simple, so he changes it. In his
problem, the cost of a merging is a polynomial function of the total number of
stones in those two heaps and you are asked to answer the minimum
cost.

Input

The first line contains one integer T, indicating the number of test
cases.
In one test case, there are several lines.
In the first line, there
are an integer N (1<=N<=1000).
In the second line, there are N
integers. The i-th integer si (1<=si<=40) indicating
the number of stones in the i-th heap.
In the third line, there are an
integer m (1<=m<=4).
In the forth line, there are m+1 integers
a0, … , am. The polynomial function is P(x)=
(a0+a1*x+a2*x2+…+am*xm).
(1<=ai<=5)

Output

For each test case, output an integer indicating the answer.

Sample Input

1
5
3 1 8 9 9
2
2 1 2

Sample Output

2840

题目大意:就是原始的石子合并的问题,相同的部分就不多介绍了,不同的便是在合并石子时,所消耗的费用不是两堆石子的总数,而是把总数代入公式:P(x)= (a0+a1*x+a2*x2+…+am*xm),同时题目也给出了a0--am的数值;

解题思路:解法就是普通的的区间DP算法,但是在做的时候老是超时,最后还是在学长的指导下,明白在第三重循环是可以不全循环,而是从上一次的两个dp中的断点之间找,并且预处理出从0到石子最大值数的带入公式的结果。唉,自己果然还是太水,改了这么久。。。。。,,看看我的备注就懂了。。心酸啊T^T
 #include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring> using namespace std; #define ll long long //const long long MAX=0xfffffffffffffff; ll num[],nmul[]; //nmul:储存预处理的结果
ll dp[][],mm[];
ll snum[]; //记录各数字的和
int kk[][]; //记录上一层次的断点 ll Pow(ll a,int k)
{
ll s=;
for(int i=; i<=k; i++)
s*=a;
return s;
} void Mul(int n,int m)
{
for(int i=;i<=snum[n-];i++)
{
nmul[i]=;
for(int j=;j<=m;j++)
nmul[i]+=mm[j]*Pow(i,j);
}
} int main()
{
int t,n,m;
/*for(int i=0; i<=40005; i++)
{
for(int j=0; j<=4; j++)
dd[i][j]=Pow(i,j);
}*/
scanf("%d",&t);
while(t--)
{
//snum[0]=0;
//memset(dp,0,sizeof(dp));
scanf("%d",&n);
for(int i=; i<n; i++)
{
scanf("%lld",&num[i]);
if(i==)
snum[i]=num[i];
else
snum[i]=snum[i-]+num[i];
}
scanf("%d",&m);
for(int i=; i<=m; i++)
scanf("%lld",&mm[i]);
Mul(n,m);
for(int i=; i<n; i++)
dp[i][i]=,kk[i][i]=i;
for(int l=; l<=n; l++)
{
for(int s=; s<n-l+; s++)
{
int e=s+l-;
ll ss=1e63; //一定要定义成最大值
for(int k=kk[s][e-]; k<=kk[s+][e]; k++) //从两个断点之间找
{
if(ss>dp[s][k]+dp[k+][e])
{
ss=dp[s][k]+dp[k+][e];
kk[s][e]=k;
}
//ss=dp[s][k]+dp[k+1][e]>ss?ss:dp[s][k]+dp[k+1][e];
}
/*ll sum=0,sss=0;
for(int k=s; k<=e; k++)
sum+=num[k];
for(int k=0; k<=m; k++)
sss+=mm[k]*Pow(sum,k);*/
dp[s][e]=ss+nmul[snum[e]-snum[s-]];;
//printf("s=%d,e=%d,dp=%lld\n",s,e,dp[s][e]);
}
}
printf("%lld\n",dp[][n-]);
}
return ;
}

CSU 1616: Heaps(区间DP)的更多相关文章

  1. CSU 1592 石子合并 (经典题)【区间DP】

    <题目链接> 题目大意: 现在有n堆石子,第i堆有ai个石子.现在要把这些石子合并成一堆,每次只能合并相邻两个,每次合并的代价是两堆石子的总石子数.求合并所有石子的最小代价. Input ...

  2. 【BZOJ-4380】Myjnie 区间DP

    4380: [POI2015]Myjnie Time Limit: 40 Sec  Memory Limit: 256 MBSec  Special JudgeSubmit: 162  Solved: ...

  3. 【POJ-1390】Blocks 区间DP

    Blocks Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 5252   Accepted: 2165 Descriptio ...

  4. 区间DP LightOJ 1422 Halloween Costumes

    http://lightoj.com/volume_showproblem.php?problem=1422 做的第一道区间DP的题目,试水. 参考解题报告: http://www.cnblogs.c ...

  5. BZOJ1055: [HAOI2008]玩具取名[区间DP]

    1055: [HAOI2008]玩具取名 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 1588  Solved: 925[Submit][Statu ...

  6. poj2955 Brackets (区间dp)

    题目链接:http://poj.org/problem?id=2955 题意:给定字符串 求括号匹配最多时的子串长度. 区间dp,状态转移方程: dp[i][j]=max ( dp[i][j] , 2 ...

  7. HDU5900 QSC and Master(区间DP + 最小费用最大流)

    题目 Source http://acm.hdu.edu.cn/showproblem.php?pid=5900 Description Every school has some legends, ...

  8. BZOJ 1260&UVa 4394 区间DP

    题意: 给一段字符串成段染色,问染成目标串最少次数. SOL: 区间DP... DP[i][j]表示从i染到j最小代价 转移:dp[i][j]=min(dp[i][j],dp[i+1][k]+dp[k ...

  9. 区间dp总结篇

    前言:这两天没有写什么题目,把前两周做的有些意思的背包题和最长递增.公共子序列写了个总结.反过去写总结,总能让自己有一番收获......就区间dp来说,一开始我完全不明白它是怎么应用的,甚至于看解题报 ...

随机推荐

  1. POJ3126 Prime Path(BFS)

    题目链接. AC代码如下: #include <iostream> #include <cstdio> #include <cstring> #include &l ...

  2. GPS

    百度百科   http://baike.baidu.com/link?url=Kl6eLdP-fveCsHt1wHF8TVuOR9wkT2K3qFnWy36PcaYaB1hdgOS_cnTEB0jIg ...

  3. MVC4中EasyUI Tree异步加载JSON数据生成树

      1,首先构造tree接受的格式化数据结构MODEL /// <summary> /// 定义EasyUI树的相关数据,方便控制器生成Json数据进行传递 /// </summar ...

  4. Hibernate二 映射 注解 一级缓存

    Hibernate映射1.@Entity 被该注解修饰的POJO类是一个实体,可以用name属性指定该实体类的名称,系统默认以该类的类名作为实体类的名称.2.@Table 指定持久化类所映射的表,它的 ...

  5. SVM原理(1)

    SVM即支持向量机,是一种机器学习内的二类分类方法,是有监督学习方法. 首先我们需要建立一个分类任务: 首先考虑线性可分的情况:(所谓线性可分就是在N维空间上的两类点,可以用N-1个未知数的函数(超平 ...

  6. Vs 2008 对 OpenMP 的 支持 以及 OpenMP的环境变量及库函数

    Visual C++® 2008对OpenMP的支持 VC++2008根据项目属性配置的指示进行 /openmp编译器切换,当配置了OpenMP支持后,编译器会提供_OPENMP定义,可以使用#ifd ...

  7. JSP执行过程详解

    复习JSP的概念 JSP是Java Server Page的缩写,在传统的HTML页面中加入JSP标签和java的程序片段就构成了JSP. JSP的基本语法:两种注释类型.三个脚本元素.三个元素指令. ...

  8. web系统架构的演进变化很形象

    随着互联网的发展,网站应用的规模不断扩大,常规的垂直应用架构已无法应对,分布式服务架构以及流动计算架构势在必行,亟需一个治理系统确保架构有条不紊的演进. 单一应用架构 当网站流量很小时,只需一个应用, ...

  9. C++ 让 Win32 Console Application 程序后台运行

    方法一:(无闪现) 添加   #pragma comment( linker, "/subsystem:\"windows\" /entry:\"mainCRT ...

  10. 关于xml作为模板的配置服务系统开发

    最近在做一个后台配置系统,其实之前也接触过,所谓的配置系统就是指,将你的网站布局抽象成一个xml模板,里面包括你自定义的节点,然后将变化的部分作为配置项,通过服务将配置选项与模板组装成一个js(这个服 ...