题意:给定一棵树,求任意两点之间的距离。

思路:由于树的特殊性,所以任意两点之间的路径是唯一的。u到v的距离等于dis(u) + dis(v) - 2 * dis(lca(u, v)); 其中dis(u)表示u到根节点的距离。

RMQ求LCA,过程如下,摘自http://dongxicheng.org/structure/lca-rmq/

在线算法DFS+ST描述(思想是:将树看成一个无向图,u和v的公共祖先一定在u与v之间的最短路径上):

(1)DFS:从树T的根开始,进行深度优先遍历(将树T看成一个无向图),并记录下每次到达的顶点。第一个的结点是root(T),每经过一条边都记录它的端点。由于每条边恰好经过2次,因此一共记录了2n-1个结点,用E[1, ... , 2n-1]来表示。

(2)计算R:用R[i]表示E数组中第一个值为i的元素下标,即如果R[u] < R[v]时,DFS访问的顺序是E[R[u], R[u]+1, …, R[v]]。虽然其中包含u的后代,但深度最小的还是u与v的公共祖先。

(3)RMQ:当R[u] ≥ R[v]时,LCA[T, u, v] = RMQ(L, R[v], R[u]);否则LCA[T, u, v] = RMQ(L, R[u], R[v]),计算RMQ。

由于RMQ中使用的ST算法是在线算法,所以这个算法也是在线算法。

代码如下(LCA模板):

//LCA algorithm templet
#include <cstdio>
#include <iostream>
#include <cstring>
#include <cmath>
#include <cstdlib>
#include <algorithm> using namespace std;
typedef long long ll;
const int maxn = ;
int tot, head[maxn];
struct Edge {
int to, next;
int w;
}edge[maxn<<];//edge
int Euler[maxn<<];//Euler sequence
int R[maxn];//the R one visit
int dep[maxn<<];//depth
int dis[maxn<<];//dis[i] represent the distance between i and root int cnt;//the counter
void init()
{
tot = ;
cnt = ;
memset(head, -, sizeof(head));
memset(R, , sizeof(R));
memset(dis, , sizeof(dis));
}
void addedge(int u, int v, int w)
{
edge[tot].to = v;
edge[tot].w = w;
edge[tot].next = head[u];
head[u] = tot++;
}
void dfs(int u, int fa, int depth, int dist)
{
Euler[++cnt] = u;
dis[cnt] = dist;
dep[cnt] = depth;
R[u] = cnt;
for (int i = head[u]; i != -; i = edge[i].next)
{
int v = edge[i].to;
if (v == fa) continue;
dfs(v, u, depth + , dist + edge[i].w);
Euler[++cnt] = u;
dis[cnt] = dist;
dep[cnt] = depth;
}
}
int Rmin[maxn * ][];//Rmin represent the number(order number) of node
void RMQ(int n)
{
for (int i = ; i <= n; i++)
Rmin[i][] = i;//initalization
int k = (int)log2(n);
for (int j = ; j <= k; j++)
{
for (int i = ; i + ( << j) - <= n; i++)//按照dep来找最小值
Rmin[i][j] = dep[Rmin[i][j - ]] < dep[Rmin[i + ( << (j - ))][j - ]] ? Rmin[i][j - ] : Rmin[i + ( << (j - ))][j - ];
}
}
//找到u和v的距离
int query(int u, int v)
{
int l = R[u], r = R[v];
if (l > r) swap(l, r);
int k = (int)log2(r - l + );
int tmp = dep[Rmin[l][k]] < dep[Rmin[r - ( << k) + ][k]] ? Rmin[l][k] : Rmin[r - ( << k) + ][k];
//return Euler[tmp];//这里是返回u和v的公共祖先
return dis[l] + dis[r] - * dis[tmp];//这里返回距离
}
int main()
{
int n, tmp;
while (~scanf("%d %d", &n, &tmp))
{
init();
int u, v, w;
for (int i = ; i < n; i++)
{
scanf("%d %d %d %*s", &u, &v, &w);
addedge(u, v, w);
addedge(v, u, w);
}
dfs(, , , );
RMQ(cnt);
int Q;
scanf("%d", &Q);
while (Q--)
{
scanf("%d %d", &u, &v);
printf("%d\n", query(u, v));
}
}
return ;
}

POJ 1986(LCA and RMQ)的更多相关文章

  1. POJ 1986 Distance Queries(Tarjan离线法求LCA)

    Distance Queries Time Limit: 2000MS   Memory Limit: 30000K Total Submissions: 12846   Accepted: 4552 ...

  2. POJ.1986 Distance Queries ( LCA 倍增 )

    POJ.1986 Distance Queries ( LCA 倍增 ) 题意分析 给出一个N个点,M条边的信息(u,v,w),表示树上u-v有一条边,边权为w,接下来有k个询问,每个询问为(a,b) ...

  3. POJ 1986 Distance Queries LCA两点距离树

    标题来源:POJ 1986 Distance Queries 意甲冠军:给你一棵树 q第二次查询 每次你问两个点之间的距离 思路:对于2点 u v dis(u,v) = dis(root,u) + d ...

  4. POJ 1986 Distance Queries / UESTC 256 Distance Queries / CJOJ 1129 【USACO】距离咨询(最近公共祖先)

    POJ 1986 Distance Queries / UESTC 256 Distance Queries / CJOJ 1129 [USACO]距离咨询(最近公共祖先) Description F ...

  5. LCA和RMQ

    下面写提供几个学习LCA和RMQ的博客,都很通熟易懂 http://dongxicheng.org/structure/lca-rmq/ 这个应该是讲得最好的,且博主还有很多其他文章,可以读读,感觉认 ...

  6. ZOJ 3195 Design the city LCA转RMQ

    题意:给定n个点,下面n-1行 u , v ,dis 表示一条无向边和边权值,这里给了一颗无向树 下面m表示m个询问,问 u v n 三点最短距离 典型的LCA转RMQ #include<std ...

  7. [CF 191C]Fools and Roads[LCA Tarjan算法][LCA 与 RMQ问题的转化][LCA ST算法]

    参考: 1. 郭华阳 - 算法合集之<RMQ与LCA问题>. 讲得很清楚! 2. http://www.cnblogs.com/lazycal/archive/2012/08/11/263 ...

  8. lca转RMQ

    这个博客写得好 #include <stdio.h> #include <vector> #include <string.h> using namespace s ...

  9. poj 1330 LCA最近公共祖先

    今天学LCA,先照一个模板学习代码,给一个离线算法,主要方法是并查集加上递归思想. 再搞,第一个离线算法是比较常用了,基本离线都用这种方法了,复杂度O(n+q).通过递归思想和并查集来寻找最近公共祖先 ...

随机推荐

  1. bootstrap-datetimepicker配置选项

    依赖 需要bootstrap的下拉菜单组件 (dropdowns.less) 的某些样式,还有bootstrap的sprites (sprites.less and associated images ...

  2. 使用Raphael 画图(三) 事件 (javascript)

    这章展示事件例子. 下图是官方API的事件: 例子: var butt1 = paper.set(); var a1 = paper.circle(24.833, 26.917, 26.667).at ...

  3. 最优秀的5个Linux文本编辑器

    from: http://article.yeeyan.org/view/169956/174836 作为不久前举办的比赛的一部分内容,我从那些选出他们最喜欢的Linux文本编辑器的极客读者们那获得了 ...

  4. WWDC2014之iOS使用动态库

    苹果的开放态度 WWDC2014上发布的Xcode6 beta版有了不少更新,其中令我惊讶的一个是苹果在iOS上开放了动态库,在Xcode6 Beta版的更新文档中是这样描述的: Frameworks ...

  5. vs 2015 菜单重复的问题解决方法

    打开 “运行” 输入 D:\Program Files (x86)\Microsoft Visual Studio 14.0\Common7\IDE\devenv.exe /resetuserdata ...

  6. operation 多线程

    2.Cocoa Operation 优点:不需要关心线程管理,数据同步的事情.Cocoa Operation 相关的类是 NSOperation ,NSOperationQueue.NSOperati ...

  7. 用nodejs,express,ejs,mongo,extjs实现了简单了网站后台管理系统

    源代码下载地址:http://download.csdn.net/detail/guoyongrong/6498611 这个系统其实是出于学习nodejs的目的而改写的系统. 原来的系统前端使用了ex ...

  8. 转 一些shell经验

    http://www.cnblogs.com/xublogs/archive/2010/03/16/2292254.html http://www.cnblogs.com/stephen-liu74/ ...

  9. Unity3d 与IOS 相互调用

    Unity3d 与IOS 相互调用 @灰太龙 群63438968 我用的Unity3d 4.2版本,这一节说一下IOS与U3D的交互! 首先在U3D中写个方法:这个时候导出为ios代码必须是真机,模拟 ...

  10. VS2012中使用Boost库的方法(超级简单)

    很不错的博客一定得看 http://my.csdn.net/caimouse 1.下载boost库 从http://www.boost.org上下载到目前最新的boost库,快速传送门:boost_1 ...